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Abstract

Four natural boundary statistics and two natural bulk statistics are considered for alternating sign matri-
ces (ASMs). Specifically, these statistics are the positions of the 1’s in the first and last rows and columns
of an ASM, and the numbers of generalized inversions and —1’s in an ASM. Previously-known and related
results for the exact enumeration of ASMs with prescribed values of some of these statistics are discussed
in detail. A quadratic relation which recursively determines the generating function associated with all six
statistics is then obtained. This relation also leads to various new identities satisfied by generating func-
tions associated with fewer than six of the statistics. The derivation of the relation involves combining the
Desnanot—Jacobi determinant identity with the Izergin—Korepin formula for the partition function of the
six-vertex model with domain-wall boundary conditions.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

A major focus of attention throughout the history of alternating sign matrices (ASMs) has
simply been the derivation of results related to their exact enumeration. Such results typically
state that the number of ASMs which satisfy specific conditions, such as having prescribed values
of certain statistics or being invariant under certain symmetry operations, is given by an explicit
formula or generating function, is equal to the number of combinatorial objects of some other
variety satisfying specific conditions, or is equal to a number which arises from a particular
physical model.

A few examples of such results, with references to conjectures and initial proofs, are as fol-
lows: a formula for the total number of ASMs of any fixed size but with no further conditions
applied (Mills, Robbins and Rumsey [108,109], Zeilberger [152], and Kuperberg [97]); a for-
mula for the number of ASMs with a prescribed boundary row or column (Mills, Robbins and
Rumsey [108,109], and Zeilberger [153]); formulae for numbers of ASMs invariant under certain
natural symmetry operations (Robbins [129,130], Kuperberg [98], Okada [117], and Razumov
and Stroganov [125,126]); equalities between numbers of certain ASMs and numbers of certain
totally symmetric self-complementary plane partitions (Mills, Robbins and Rumsey [110], and
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