Available online at www.sciencedirect.com

’ M M ADVANCES IN
.5 ScienceDirect M
ELS IE Advances in Mathematics 226 (2011) 4816-4840

www.elsevier.com/locate/aim

Oscillation in the initial segment complexity of random
reals *

Joseph S. Miller *, Liang Yu >*

& Department of Mathematics, University of Wisconsin, Madison, WI 53706-1388, USA
b Institute of Mathematical Sciences, Nanjing University, PR China
€ The State Key Lab for Novel Software Technology, Nanjing University, 210093, PR China

Received 8 February 2009; accepted 21 December 2010
Available online 5 January 2011

Communicated by H. Jerome Keisler

Abstract

We study oscillation in the prefix-free complexity of initial segments of 1-random reals. For upward os-
cillations, we prove that Y, ., 278 () diverges iff (3%°n)K (X [ n) > n+ g(n) for every 1-random X € 2%,
For downward oscillations, we characterize the functions g such that (3*°n)K (X | n) < n+ g(n) for almost
every X € 2%. The proof of this result uses an improvement of Chaitin’s counting theorem—we give a tight
upper bound on the number of strings o € 2" such that K (¢) <n + K (n) — m.

The work on upward oscillations has applications to the K-degrees. Write X <g Y to mean that
K(X [ n) < K(Y | n) 4+ O(1). The induced structure is called the K-degrees. We prove that there are
comparable (Ag) 1-random K -degrees. We also prove that every lower cone and some upper cones in the
1-random K -degrees have size continuum.

Finally, we show that it is independent of ZFC, even assuming that the Continuum Hypothesis fails,
whether all chains of 1-random K-degrees of size less than 2% have a lower bound in the 1-random K-
degrees.
© 2010 Elsevier Inc. All rights reserved.
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“Although this oscillatory behaviour is usually considered to be a nasty feature, we believe
that it illustrates one of the great advantages of complexity: the possibility to study degrees of
randomness.”

Michiel van Lambalgen, PhD Dissertation [31, p. 145].
1. Introduction

We study both the height and depth of oscillations in the prefix-free complexity of initial
segments of random reals. By definition, X is 1-random if and only if K(X [n) > n — o).}
On the other hand, K (o) < |o| + K (Jo]) + O(1) for any string o € 2=“ [5]. Hence K (X [n) <
n+ K(n)+ O(1). How does K (X [ n) behave between these bounds? This is the subject of the
present paper and, from a different perspective, of our companion paper [25]. Our results have
many forerunners in the literature; we mention the most relevant ones below.

First note that there is a subtle difference in the nature of the upper and lower bounds on K (X |
n). The constant in the lower bound depends in an essential way on X, unlike the constant in the
upper bound. More substantially, though neither the lower nor the upper bound can be improved
(if they are to hold for all 1-random X), they are not tight in quite the same sense. Solovay [30]
showed that almost all reals infinitely often achieve the upper bound, i.e., liminf,,_, o n + K (1) —
K (X | n) is finite for almost all X € 2¢ (see [33]). This is not true of all 1-random reals, and
in fact, it turns out to be a characterization of 2-randomness [24]. To see that the upper bound
cannot be improved at all, note that a straightforward modification of Solovay’s proof shows
that if S C w is infinite, then almost all reals infinitely often achieve the upper bound on S. On
the other hand, Chaitin proved that no 1-random can infinitely often achieve the lower bound:
if X € 2¢ is 1-random, then liminf,_ - K (X [ n) —n = oco. This does not mean that the lower
bound can be improved. In Corollary 3.2, we show that if 4 : @ — ® is unbounded, then there is
a l-random X € 2% such that (3*°n)K (X [n) <n + h(n).

If X €2 is 1-random, it cannot be the case that K (X | n) stays close to either bound; instead
it oscillates, sometimes being “close” to the upper bound and sometimes being “close” to the
lower bound. This behavior was first explored by Solovay [30]. In Section 3 we examine upward
oscillations, starting from a characterization of 1-randomness proved by the authors [25].

Ample Excess Lemma. X €2 is 1-random iff }_,, ., 2" K X" < oo,

Note that this strengthens Chaitin’s result: if X € 2“ is 1-random, then not only does
K (X [ n) — n tend to infinity, but it does so fast enough to make the series converge. An im-
mediate consequence is that if ) cwl® ) diverges, then (3%°n)K (X [ n) > n + g(n) for every
I-random X € 2¢. This generalizes a result of Solovay, who assumed additionally that g was

computable. Furthermore, this result is fight. We prove that if 3, _ 27¢ ) < o0, then there is

1 Here K denotes prefix-free complexity. See Section 2 for a review of the definitions, notation and results used in this
paper, with an emphasis on effective randomness.
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