
Calculation of the aeolian sediment flux-density profile based
on estimation of the kernel density

Meng Li ⇑, Zhibao Dong, Zhengcai Zhang
Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, No. 322, West Donggang
Road, Lanzhou, Gansu Province 730000, China

a r t i c l e i n f o

Article history:
Received 19 June 2014
Revised 11 November 2014
Accepted 11 November 2014
Available online 26 November 2014

Keywords:
Sediment flux-density profile
Nonparametric method
Kernel density estimation
Bandwidth

a b s t r a c t

Aeolian sediment flux is an important issue of aeolian research. Parametric estimation is a traditional
method in which aeolian sediment flux is estimated based on parameterization of a chosen equation. This
method is simple, but has some limitations; specifically, it requires a priori assumptions about the
density distribution that may not be correct. In this study, we applied a popular and extensively used,
data-driven, nonparametric method called kernel-density estimation to calculate the aeolian sediment
flux-density profile. Nonparametric methods make no prior assumption about the form of the density
distribution to be estimated; instead, the aim is to obtain an empirical estimate from the data that can
provably converge on the true density that would be obtained using an infinite sample size. Through
the calculation of aeolian sediment flux based on kernel-density estimation, we determined that the
key point in this method is not selection of the kernel function, but rather the selection of the optimal
bandwidth, which is a difficult task. The results of our calculations showed that the method is both com-
putationally feasible and acceptably accurate. Equally significantly, the idea of applying nonparametric
methods to the calculation of aeolian sediment fluxes may lead to the development of a suite of other
related analytical and modeling methods.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Wind erosion of soil leads to ecosystem degradation and vari-
ous hazards to human values in arid and semiarid areas, which
make up one-third of the world’s surface (Lal, 1990; Sterk and
Raats, 1996). This erosion damages valuable and nonrenewable soil
resources, and the sediments generated in the process of erosion
may form huge clouds that block sunlight, pollute water, damage
crops and herds, and even threaten human life. In addition, climate
and weather may be influenced by dust suspended in the atmo-
sphere, since the dust reflects, scatters, diffuses, and absorbs solar
radiation (Han et al., 2009). As human activities such as land recla-
mation and over-grazing can make the climate dryer and interact
with any long-term warming and drying trends, the exposure of
more soil to the wind exacerbates the problem of soil erosion
(Dong et al., 2000). During the process of wind erosion, sediment
particles are generated and transported by the wind in one of three
modes (suspension, saltation, or creep), depending on the aerody-
namic properties of the particles and the strength of the wind. Even
within the same mode, particles vary in their speed, direction,

acceleration, and other motion parameters. Due to these variations,
particles are dispersed to different heights above the ground and
form a sediment cloud.

Parametric estimation is a traditional method of aeolian sedi-
ment flux research that has been used to describe this cloud. In this
approach, the aeolian sediment flux profile is assumed to be
described by a mathematical function with several parameters.
Some distribution functions have been widely adopted, such as
the exponential and logarithmic distributions. After the distribu-
tion function has been chosen, its parameters are estimated
according to the observed data. The literature on sediment flux
research based on this approach includes data generated by
wind-tunnel tests (Butterfield, 1999; Dong et al., 2006), field
observations (Greeley et al., 1996; Namikas, 2003), and numerical
simulations and theoretical analyses (Anderson and Haff, 1988,
1991; Zheng et al., 2004; Kang et al., 2008; Shi and Huang, 2010).

Compared with parametric estimation methods, nonparametric
methods make no prior assumption about the form of the flux den-
sity to be estimated. They are therefore both flexible and capable of
reducing modeling biases, and can potentially generate more
robust and accurate estimates. Their biggest advantage is that a
supposed distribution function is not required a priori, thereby
avoiding the problem of inadvertently selecting an inappropriate
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model. In addition, where outliers exist in the data, parametric
methods may fail to capture the complete structure of the actual
curve. Non-parametric estimation methods alleviate this problem
by treating each observation as a part of the model.

Non-parametric estimation methods include histogram estima-
tion (Triola, 2010), Rosenblatt (1956) estimation, Parzen (1962)
kernel-density estimation, and nearest-neighbor estimation
(Wasserman, 2007). The histogram estimation method has been
applied extensively because it is simple and intuitive, but the size
range of the observed data must be known in advance, and the
density estimation curve is discrete. For this reason, the Rosenblatt
and Parzen kernel-density estimation methods were developed.
Rosenblatt estimation does not require a subdivision strategy for
the data and the intervals are calculated rather than assumed, so
that data points always lie in the middle of the interval. It has been
mathematically demonstrated that the estimator obtained is close
to the true value (Rosenblatt, 1956). In Parzen kernel-density esti-
mation, each estimated point has a fixed neighborhood. If the
neighborhood size is large, dense data points exert excessive influ-
ence on the overall distribution, causing flattening of curves and
potentially eliminating spikes that represent important informa-
tion. In contrast, sparse points and outliers may be ignored because
of their small neighborhood, and estimates for these neighbor-
hoods may be zero even though a non-zero result would be more
accurate or physically realistic. Loftsgaarden and Quesenberry
(1965) developed nearest-neighbor estimation to mitigate the
problems with Parzen kernel-density estimation.

In nonparametric methods, it is necessary to account for the
bandwidth, which represents a smoothing factor that is used to
reduce the effect of spikes in the density distribution (i.e., to account
for the effect of outliers), thereby producing a more regular function
that does not completely ignore the effects of outliers. When the
bandwidth is large, kernel-density estimation functions better than
the nearest-neighbor method, which is not recommended, but
many scholars nonetheless use this method to sort the data. Efron
(1979, 1982) and Efron and Stein (1981) presented a nonparametric
estimation method called bootstrapping, which produced a model
that fit the actual distribution, but with a relatively high error.
Silverman and Young (1987) decreased the mean squared error
(MSE) of the bootstrapping method. Katkovnik and Shmulevich
(2002) proposed a variable-window kernel-density estimation
method which requires only the knowledge of the variance of the
estimate. By means of numerical simulations, this method per-
formed significantly better than any constant-bandwidth method.

In this study, we examined the improved kernel-density esti-
mation method developed by Parzen (1962) with the goal of iden-
tifying the key factors that affect the use of this method. We then
applied the method to calculate the wind-blown sediment flux and
compared the results with empirical data.

2. Kernel-density estimation

Kernel-density estimation attempts to estimate an unknown
density function based on probability theory. This method has
existed for decades and some early discussions on kernel-density
estimations can be found in Rosenblatt (1956) and in Parzen
(1962). Ruppert and Cline (1994) proposed a modified kernel-den-
sity estimation based on a clustering algorithm for the dataset’s
density function. As computers become more capable of handling
high burden computation, research interests have increased.

2.1. The model definition

In our study, we started with the model of Parsen method. First,
draw a random sample X1, X2, . . .,Xn from the density function f(x).

K(�) is a probability-density function for the kernel and n is the
sample size. The kernel-density estimation for fn(x) is defined as:

f̂ nðxÞ ¼
1

nh

Xn

i¼1

K
x� Xi

h

� �
; 8x 2 R ð1Þ

where n represents the sample size, the positive constant h is called
the bandwidth, i is the sample number, and R represents the set of
real numbers.

2.2. Selection of kernel functions

Kernel-density estimation deals with more than just obtaining
an appropriate sample; it also requires careful estimation of the
kernel function and the bandwidth. All three factors determine
the performance of the estimation. Kernel functions must meet
the following requirements:

Non-negativity : KðxÞ > 0; 8x 2 R ð2Þ

Symmetry : KðxÞ ¼ Kð�xÞ; 8x 2 R ð3Þ

Normalization :

Z þ1

�1
KðxÞ ¼ 1 ð4Þ

Commonly used kernel functions (Wasserman, 2007) include
the triangular, Epanechnikov, quartic, triweight, Gaussian, cosine,
and exponential functions. In this work, we found that some kernel
functions, such as cosine kernel, Epanechnikov kernel and quartic
kernel functions, were not appropriate for the calculation of the
aeolian sediment flux-density profile, because they are confined
as |(x � Xi)/h| 6 1. Only Gaussian kernel and exponential kernel
are appropriate for this calculation. In practice, bandwidth selec-
tion becomes more important, as we will demonstrate in this
paper.

2.3. Estimation of the bandwidth

It is important to choose an appropriate bandwidth to provide
an accurate estimation of the kernel’s density distribution. Ideally,
the bandwidth should be as low as possible to avoid over-smooth-
ing the curve, but high enough to remove spikes in the estimated
distribution that would distort the description of the empirical
data. In a univariate case, the performance of the kernel-density
estimation depends strongly on the bandwidth, which functions
as a weight function for the estimated kernel. Selection of the opti-
mal bandwidth is a crucial problem in kernel-density estimation
and has been the subject of considerable theoretical research, espe-
cially in the context of univariate kernel-density estimation (Dutta,
2011). These efforts include studies by Rudemo (1982), Bowman
(1984), Silverman (1986), Scott and Terrell (1987), Park and
Marron (1990), Jones and Kappenman (1991), Cao et al. (1994),
Marron and Ruppert (1994), Wand and Jones (1995), and
Simonoff (1996).

The method for global and local bandwidth selection is the
mean integrated square error (MISE) criterion (Wasserman,
2007). Familiarization with the MISE criterion is not required for
the practical use of the kernel-density estimation, but it will help
those who are interested, learn how one rigorously arrives to a
well-chosen bandwidth.

MISE ¼ E
Z
½f̂ ðxÞ � f ðxÞ�

2
dx

� �
¼
Z

E½f̂ ðxÞ � f ðxÞ�
2
dx ð5Þ

where the density estimation f̂ ðxÞ is a kernel-density estimation of
f(x) and is a function of the bandwidth h, E represents the statistical
expectation. Our approach of bandwidth estimation is to minimize
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