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The strain rate and stress required for faulting in ice under low tomoderate confinement arewell understood and
can be quantified in terms of independentlymeasuredmaterials parameters. Under high confinement, defined as
confinement sufficient to suppress frictional sliding, brittle-like failure is still observed, even at pressure well
below that required for faulting associated with phase transformations. While previous work has qualitatively
suggested that high-confinement faults not associatedwith phase transformations, here termed P-faults, are like-
ly associatedwith adiabatic instabilities, the failuremap for P-faulting remains incomplete because of the lack of a
quantitative understanding of the P-faulting terminal failure stress. Here we develop a new quantitative model
for the P-faulting terminal failure stress that is consistent with recent experimental observations and then use
this model to complete the failure map for compressive brittle and brittle-like failure of freshwater ice.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The force on engineered structures in ice-infested waters is limited
by loads induced by interactions with ice (ISO, 2010). Ice loads are
often governed by compressive failure processes active under both
high and low confinement (Kim et al., 2012) and thus a deeper under-
standing of the physical processes during compressive failure of ice
can contribute to a better estimation of ice interaction loads. When ice
is rapidly loaded under very little to no triaxial confinement, where con-
finement is defined below, compressive failure occurs via axial splitting
(Wachter et al., 2008). Under low tomoderate confinement failure dur-
ing rapid loading occurs via shear faulting (Schulson et al., 1999). Be-
cause of the important role of friction in the formation of faults under
low to moderate confinement (Renshaw and Schulson, 2001), we
refer to low-confinement faults as Coulombic or C-faults. Under higher
confinement ratios, frictional sliding is suppressed, but brittle-like fail-
ure is still observed, even at hydrostatic pressure well below that re-
quired for faulting associated with solid-state phase transformations
(Kirby, 1987; Schulson, 2002). Failure is “brittle-like” in the sense that
failure is accompanied by both the localization of strain along a macro-
scopic faultingplane and a sudden drop in the load-bearing ability of the
material. Because of the important role of ductile deformation in the for-
mation of high-confinement faults, we refer to high-confinement faults
that occur in the absence of phase transformations as plastic or P-faults.
By “plastic” in this context we mean von Mises or volume-conserving
deformation, the resistance to which is independent of the hydrostatic
component of the stress tensor (c.f. Schulson and Duval, 2009).

We define triaxial confinement, Rc, in terms of a ratio of the two
principal stresses which have non-zero components when resolved
onto the fault plane. The orientation of the fault plane, and thus which
two principal stresses are used to define the confinement, depends on
the microstructure of the ice. In granular ice (macroscopically isotropic
microstructure), fault planes are oriented parallel to the direction of the
intermediate principal stress. Because the fault plane is parallel to the
direction of the intermediate principal stress, the component of the in-
termediate principal stress acting on the fault plane is zero. Thus Rc is
defined as the ratio of the least to the greatest principal stress.

For S2 columnar ice (macroscopically isotropic only in the plane
transverse to the long axis of the columnar-shaped grains), the orienta-
tion of the fault planewith respect to themicrostructure varies depend-
ing on how the ice is loaded (Golding et al., 2010). Here we limit our
attention to the case of most practical interest where the least principal
stress acts in a direction parallel to the long axes of the columns, such as
often occurs in horizontally-loaded sea ice. In this case under lower con-
finement fault planes are parallel to the long axes of the columns. Be-
cause the fault plane is parallel to the direction of the least principal
stress, the component of the least principal stress acting on the fault
plane is zero. Thus confinement is defined as the ratio of the intermedi-
ate to the greatest principal stress. Under higher confinement, faults
may be oriented either parallel to the long axes of the columns, in
which case confinement is defined in the same manner, or parallel to
the direction of the intermediate principal stress, in which case confine-
ment is defined as the ratio of the least to the greatest principal stress
(see Figure 5 of Golding et al. (2010)).

Previous work has quantified the strain rate and stress required for
C-faulting in ice and rock in terms of independentlymeasuredmaterials
parameters (Renshaw and Schulson, 2001). Previous work has also de-
fined the strains and strain rates necessary for P-faulting (Golding et al.,
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2012), again in terms of non-adjustable parameters. However, work to
date has not quantified a failure-modemap, principally because our un-
derstanding of P-faulting remained incomplete. Herewe develop such a
map, based upon a new quantitative model for the P-faulting terminal
failure stress that is consistent with recent experimental observations
(Golding et al., 2010, 2012).

2. Model development

2.1. P-faulting

In P-faulting deformation is localized due to the instability that de-
velops when thermal softening exceeds strain and strain rate hardening
(Renshaw and Schulson, 2004). The requirements are twofold; a critical
local effective strain εclocal is required to generate sufficient heat, and a
critical local effective strain rateε̇localc is required to ensure approximately
adiabatic conditions. By “local”wemean the strain and strain rate with-
in the incipient plastic fault as opposed to the macroscopic “global”
strain and strain rates obtained from measurements of displacement
along boundaries. The use of local strain and strain rate permits us to re-
late fundamental materials properties to macroscopic constitutive rela-
tionships. Our use of “local” is not meant to imply the strain or strain
rate at, for example, a particular node in a discretized finite element
mesh. As a practical matter, in applying the results from this work, the
strains and strain rates at discrete nodes are “global” even though
they vary in both space and time; typically the local strain and strain
rates are not modeled explicitly.

The twofold requirements for P-faulting can be quantified through a
balance of the effects of strain and strain rate hardening and the
effect of thermal softening (see eqns. 17.21 and 17.26 in Frost
and Ashby, 1982)

εlocalc ¼ −mρCp

∂σ=∂T ð1Þ

and

ε̇c
local ¼ 2aκεlocalc

ρCpw
2
d

ð2Þ

where m is the work-hardening exponent in the expression σ∝εm,
where σ and ε are the effective stress and strain, respectively, ε̇ is
the effective plastic strain rate, a is a geometrical factor of order
unity, κ is the thermal conductivity, Cp is the specific heat, ρ is
the density of ice, wd is the characteristic length of heat diffusion,
T is the temperature, and ∂σ=∂T denotes thermal softening. Here
effective stress, σ , is defined for granular ice using von Mises' crite-
rion for a plastically isotropic material; for columnar ice we use
Hill's criterion (Hill, 1950) for a plastically anisotropic material
(Golding et al., 2010). The effective strain is estimated from the in-
elastic strain increment, as determined for granular ice using the
Levy–Mises relationship (Dieter, 1986) and for columnar ice using
Hill's relationship (Hill, 1950). The local strain rate within the fault
is related to measured rates of global effective deformation by the
ratio of the volume of the fault to the volume of the ice, giving
(Golding et al., 2012)

ε̇ global ¼
ffiffiffi
2

p
wf

‘
ε̇local ð3Þ

where wf is the width of the fault and ‘ is a characteristic length. In
the laboratory where a single fault develops within sub-meter sized
test specimens, ‘ is taken as the length of the specimen along the di-
rection of shortening. Plastic strain is assumed equal to the inelastic
strain.

The effective stress required for P-faulting can be estimated by first
combining Eqs. (1)–(3) to give

ε̇c
global ¼ −2

ffiffiffi
2

p
aκmwf

‘w2
d ∂σ=∂Tð Þ : ð4Þ

This expression is then combined with a rate dependent plastic flow
law to relate the critical global strain rate to the corresponding failure
stress. Two phenomenological flow laws are commonly assumed to de-
scribe plastic deformation in ice. One is an Arrhenius power-law equa-
tion of the form

ε̇ global ¼ Apσ
npe−Qp= RTð Þ ð5Þ

whereAp is amaterials property thatmay dependon grain size and tem-
perature, Qp is the apparent activation energy, R is the gas constant, and
np is the stress exponent. At relatively low stresses over the range of
stresses where the power-law equation applies the stress exponent
np ~ 3 (Frost and Ashby, 1982). We characterize this type of deforma-
tion as “low-stress power-law creep” or simply “low-stress creep”. At
higher stresses the creep rate limiting process is thought to transition
from dislocation climb-controlled to dislocation glide-controlled flow
(Frost and Ashby, 1982). We refer to this as “high-stress creep”. Within
the high-stress creep regime deformation is sometimes still described
by an Arrhenius power-law equation (Eq. (5)), but with a stress expo-
nent np N 3. Alternatively, the power-law relationship between effec-
tive stress and effective strain rate may break down in the high-stress
creep regime and deformation may be instead characterized by an ex-
ponential flow law of the form

ε̇ global ¼ Aee
βσe−Qe= RTð Þ ð6Þ

where Ae and β arematerials properties and Qe is the apparent activation
energy for high-stress creep. The transition from a low-stress power law
to a high-stress exponential flow law can by quantified by a single hyper-
bolic creep law of the form (Garofalo, 1963; Wong and Jonas, 1968)

ε̇ global ¼ Ah sinh ασð Þ½ �nh e−Qh= RTð Þ ð7Þ

where Ah is a materials property and the parameter α is the reciprocal of
the effective stress at which low and high stress creep contribute equally
to the global creep rate. For values ofασ less than about 0.8, this expres-
sion reduces to the power-law creep expression (Eq. (5)) with Ah = Ap/
αn. Forασ greater than about 1.2 this expression reduces to the exponen-
tial flow law (Eq. (6)) with β = nα.

2.2. C-faulting

The strain rate that marks the ductile–brittle transition under
conditions that lead to C-faulting can be estimated following the analy-
sis of Renshaw and Schulson (2001) and Schulson et al. (1999). Accord-
ingly, and building on experimental observations, the analysis suggests
that C-faulting initiates owing to the bending-induced failure of slender
microcolumns created from sets of secondary cracks that emanate from
one side of a sliding primary crack. The C-faulting transitional strain rate
is then given by (Renshaw and Schulson, 2001)

ε̇c
C ¼ 25K

np
Ic Ape

−Qp= RTð Þ

dnp=2 1−Rcð Þ−μ 1þ Rcð Þ½ � ð8Þ

where ε̇c
C is the minimum strain rate required for C-faulting, KIC is the

fracture toughness, d is the grain size, μ is the friction coefficient, Rc is
the confinement ratio of principal stresses (mentioned above), and
thematerials parameters Ap andQp are those for low-stress creep. In de-
veloping this model, Schulson et al. (1999) invoked an Arrhenius
power-law relating stress to strain rate (Eq. (5)) and assumed np = 3.
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