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This paper presents a new approach for simulating the watermigration in freezing soils, inwhich the pore water
migration and heat transfer are characterized using an imaginary pump attached with a small imaginary reser-
voir. The pumpmoveswith the freezing front as temperature decreases, sucks the liquidwater from the unfrozen
zone and then stores it in the frozen zone. The reservoir is used to gather the suckedwater and store it in the form
of pore ice through phase change. Explicit governing equations are developed for describing thewatermigration,
crystallization and/or heat transfer in the soil, the pump and the reservoir. The proposed model is numerically
implemented into a commercial code. Compared to the previous approaches used to simulate the soil freezing
processes, application of the new approach avoids remeshing and recalculating the moving boundaries, and
this feature can drastically simplify the numerical implementation of the theoretical model. The new approach
is used to analyze the one-dimensional freezing process in soils. The simulated results are compared with the
experimental data available in the literature and the simulations based on other approaches, showing that the
new approach is capable of effectively simulating the freezing process of soils.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Any freezing process in soil is accompanied by both heat and pore
water transfers, and these processes occur in a coupled manner. During
a freezing process, a temperature gradient forms in the soil, driving the
heat to flow from the higher-temperature zone toward the lower-
temperature zone and the pore water to migrate from the unfrozen
zone to the frozen zone. The pore water migration driven by tempera-
ture can influence the heat conduction process due to the effect of con-
vection and latent heat of phase change, while the heat conductionmay
induce phase change and in turn change the hydraulic conductivity of
the soil (Harlan, 1973; O'Neill and Miller, 1985; Taylor and Luthin,
1978). In addition, both heat and mass transfer can change the physical
andmechanical properties of the soil. In analyzing the problems related
to soil freezing, it is crucial to properly characterize both heat and pore
water transferring processes.

If a fully saturated soil with a sufficientwater supply begins to freeze,
the soil waterwill constantlymigrate to the frozen zone from the unfro-
zen region due to the effect of cryosuction, resulting in an increase in the
water content of the frozen zone, while the water content in the unfro-
zen zone remains practically unchanged. Therefore, in analyzing the
freezing process of a fully saturated soil with a sufficient water supply,
only the water increase in the frozen zone and consequently the total

frost heave are of concern, and the problem can be solved by ignoring
the effect of the water content variation and the skeletal deformation
in the unfrozen zone (Xu and Deng, 1991; Zhou et al., 2011). In the
freezing process of an unsaturated soil, however, the water migration
is more complex, and this is the case especially for a closed system,
i.e., the soil without a water supply. In this case, the water content
increases in the frozen zone while decreases in the unfrozen zone. The
problem is complicated by the movement of the interface between the
frozen and the unfrozen zone with temperature.

To simulate the processes of heat and water transfer in unsaturated
freezing soil, Chen et al. (1990) and Hu et al. (1992) developed the
governing equations of water migration in the frozen and unfrozen
zones, respectively. It is remarkable, however, that in applying these
equations, a boundary condition has to be introduced to ensure the
flow continuity between the frozen and unfrozen zones. As such,
when the interface moves with the freezing front, the boundary condi-
tion of these two equations also varywith temperature. Hence, if a finite
element or finite difference procedure is adopted in the simulation, it is
necessary to remesh and recalculate the moving boundary after each
time step. In addition to this complexity, the high nonlinearity of the
governing equations and the coupling of heat and water transfer make
the simulation procedure rather difficult (Black, 1995a; Chen et al.,
1990; Hu et al., 1992; O'Neill and Miller, 1985; Taylor and Luthin,
1978; Zhou and Zhou, 2010).

In this paper a new approach is presented to simulating the one-
dimensional pore water migration in freezing unsaturated soils. In this
approach, the frozen fringe can be envisioned as a moving pump,
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which sucks pore water from the unfrozen zone and store it as pore ice
through phase transition in the frozen zone. To characterize the crystal-
lization of the sucked pore water, a small imaginary reservoir is intro-
duced, which is attached to the moving pump and used for collecting
the sucked pore water and related phase transition. During the soil
freezing, the pump and the reservoir simultaneously move as the tem-
perature decreases. Governing equations are then developed for the
water migration and heat transfer as well as phase transition in the
pump and/or in the reservoir. As such, in simulating the soil freezing
process, it is not necessary to change the boundary conditions of the
solution domain, and the theoretical model can be readily implemented
into a commercial code without complex programming.

2. Theory

2.1. The driving force for water migration in freezing soil

In a frozen soil, a certain amount of unfrozen water exists in the
vicinity between the surfaces of soil grains and ice grains due to the
premelting effect (Wettlaufer and Worster, 1995; Wettlaufer et al.,
1996; Xu et al., 1993). At equilibrium, the pressures of the unfrozen
pore water and the pore ice can be related to each other through the
generalized Clapeyron equation (Black, 1995b), i.e.,

duw ¼ ρw

ρi
dui þ

ΔHρw

T0
dT ð1Þ

where uw and ui are the pressures of unfrozen pore water and pore ice,
respectively; ρw and ρi are the densities of pore water and pore ice, re-
spectively; T0 (K), T(°C) and ΔH are the freezing point of bulk water,
the current temperature and the latent heat of fusion, respectively.
Without overburden loading, ui remains practically unchanged, while
uw decreases linearly with temperature according to Eq. (1).

Strictly, the generalized Clapeyron equation is valid only in the case
that unfrozen pore water and pore ice coexist in equilibrium. In any
transient process, however, this equilibrium condition cannot be strictly
achieved. In the following, it is assumed that the temperature change
and the water migration are slow enough compared to the phase
change, so that Eq. (1) is valid under the transient condition. Eq. (1) im-
plies that, if ice pressure gradient is neglected, a temperature gradient
can induce pore water pressure gradient, driving the pore water to
migrate from the higher temperature zone to the lower temperature
zone.

Harlan (1973) assumed that the potential of porewater in the frozen
soil equals to that in the unsaturated soil with the same liquid water
content. This assumption has been validated using the soil–water char-
acteristic curve (SWCC) and the soil freezing characteristic curve (SFCC)
of the soil under partially saturated and frozen conditions, respectively
(Azmatch et al., 2012; Liu et al., 2011; Spaans and Baker, 1996). Indeed,
according to the generalized Clapeyron equation, one can easily see that,
if the ice pressure is constant and capillary hysteresis is excluded, there
is a one-to-one correspondence between unfrozen water content and
temperature in the frozen soil. Hence, both the pore water pressure
and the temperature in the frozen soil (with undercooling pore water)
can be expressed as a function of unfrozen water content only. Based
on the above discussions, it is suggested that, if the ice pressure remains
constant and its gradient is neglected, the driving force of water migra-
tion in the frozen soil can be expressed as the gradient of unfrozen
water content.

2.2. Governing for water migration and heat transfer

Based on the above discussions, if the gradient of ice pressure is neg-
ligible, the seepage velocity can generally be expressed as the diffusivity
multiplying the gradient of unfrozen water content (Shao et al., 2006).
Recalling the assumption that the heat conduction and the water

migration are slow enough compared to the phase change (between
liquid water and ice), one obtains the governing equation for water mi-
gration in frozen soils, which in a form similar to the Richards Equation
(Richards, 1931; Taylor and Luthin, 1978):

∂
∂t θu þ

ρi

ρw
θi

� �
¼ ∂

∂x D
∂θu
∂x

� �
ð2Þ

where t and x represent the elapsing time and the spatial coordinate,
respectively; D is the water diffusivity; θu is the specific unfrozen (or
liquid) water content; θi is the specific ice content. The term in the
bracket of the left-hand side is equal to the total specific water content
(including both liquid water and ice). Hereinafter both ρw and ρi are
assumed to be constant. Eq. (2) implies that any change in the total
specific water content of the frozen soil is solely due to the transfer of
unfrozen water.

In general, the migrating process of pore water in a frozen soil is
slow, and thus its effect on heat convection is negligible. Hence, one
obtains the heat conduction equation as (Taylor and Luthin, 1978):

C
∂T
∂t ¼ ∂

∂x λ
∂T
∂x

� �
þ Lρi

∂θi
∂t ð3Þ

where C is the volumetric heat capacity, λ is the thermal conductivity of
the soil, and L is the latent heat of fusion (per unit mass of water).

In a freezing soil subjected to a temperature gradient, two processes
associated with crystallization in the pores may simultaneously occur.
Indeed, as the temperature decreases, part of the liquid water at the
site may change into ice, while a certain amount of liquid water is
sucked from the higher-temperature zone into the frozen zone where
it crystallizes. Correspondently, the variation of θi (Eq. (3)) can be addi-
tively decomposed into two components (Penner andUeda, 1978; Zhou
et al., 2011): one is due to the crystallization of the liquid pore water at
the site (denoted as dθ1), and the other is due to the crystallization of
the sucked liquid water (i.e., the water transferred from other places),
which is denoted as dθ2. Then, the variation of the specific ice content
can be expressed as

dθi ¼ dθ1 þ dθ2 ð4Þ

where

dθ1 ¼ −ρw

ρi
dθin ð5Þ

and

∂θ2
∂t ¼ ρw

ρi
q ð6Þ

where θin is the specific content of the liquid water that changes into
pore ice at the site, and q is the changing rate of the specific content of
the liquid water sucked from the higher-temperature zone. Eq. (6) im-
plies that all the liquid water sucked from the higher-temperature
zone changes into pore ice.

Substituting Eqs. (4)–(6) into Eq. (3), one obtains

Ce
∂T
∂t ¼ ∂

∂x λ
∂T
∂x

� �
þ Lρwq ð7Þ

where Ce is the equivalent volumetric heat capacity, defined by

Ce ¼ C þ Lρw
∂θin
∂T ð8Þ

Clearly, Ce includes a component related to the latent heat that is
released by the phase change at the site (Bonacina et al., 1973).
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