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The deformation of partially molten mantle in tectonic environments can lead to exotic structures, which 
potentially affect both melt and plate-boundary focussing. Examples of such structures are found in 
laboratory deformation experiments on partially molten rocks. Simple-shear and torsion experiments 
demonstrate the formation of concentrated melt bands at angles of around 20◦ to the shear plane. 
The melt bands form in the experiments with widths of a few to tens of microns, and a band spacing 
roughly an order of magnitude larger. Existing compaction theories, however, cannot predict this band 
width structure, let alone any mode selection, since they infer the fastest growing instability to occur 
for wavelengths or bands of vanishing width. Here, we propose that surface tension in the mixture, 
especially on a diffuse interface in the limit of sharp melt-fraction gradients, can mitigate the instability 
at vanishing wavelength and thus permit mode selection for finite-width bands. Indeed, the expected 
weak capillary forces on the diffuse interface lead to predicted mode selection at the melt-band widths 
observed in the experiments.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

While mantle melting only occurs within a small volume of the 
Earth, it plays a disproportionate role in both geochemical evolu-
tion and plate-boundary processes (see Cox et al., 1993). Indeed, 
the unique deformation of partial melts likely controls flow and 
strain focussing at both convergent and divergent plate bound-
aries (e.g., Spiegelman and McKenzie, 1987; Katz, 2008; Gerya 
and Meilick, 2011; Gerya, 2013). In particular, sheared partial 
melts have been demonstrated in laboratory experiments (Daines 
and Kohlstedt, 1997; Holtzman et al., 2003; King et al., 2010;
Qi et al., 2013) to develop narrow melt bands at shallow angles 
(∼20◦) to the direction of motion. Such melt banding may provide 
high-permeability pathways that strongly influence the transport 
of melt to the Earth’s surface (Kohlstedt and Holtzman, 2009).

The observed shallow angle of these melt bands is enigmatic 
and has been the subject of several theoretical studies invok-
ing two-phase compaction theory with various rheological mech-
anisms (Stevenson, 1989; Spiegelman, 2003; Katz et al., 2006;
Takei and Holtzman, 2009; Butler, 2012; Takei and Katz, 2013;
Katz and Takei, 2013; Rudge and Bercovici, 2015). An equally sig-
nificant enigma is that current two-phase models cannot predict 
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the basic melt band width, since they infer the fastest grow-
ing instability to have zero wavelength. Laboratory experiments, 
however, show that while the melt bands are very narrow, of 
order a few to tens of microns wide, and with band spacing 
roughly an order of magnitude wider (Holtzman et al., 2003;
Holtzman and Kohlstedt, 2007; Kohlstedt and Holtzman, 2009), 
they are consistently not vanishingly small. The failure to predict 
mode selection has been a significant conundrum for understand-
ing the physics let alone believing the theories, and is problematic 
for numerical simulations for which instabilities shrink to the grid-
scale, and thus cannot be resolved (Katz et al., 2006; Butler, 2012;
Alisic et al., 2014). Butler (2010) proposed that, in the finite strain 
limit, the rotation of bands through the optimal angle of growth 
can amplify larger wavelength bands, although as shown earlier 
by Spiegelman (2003) this effect depends on the initial condi-
tions for the structure of the porosity perturbations. Takei and 
Hier-Majumder (2009) proposed that compaction coincident with 
dissolution and precipitation provides mode selection governed 
by a chemical diffusion length scale, which is indeed similar to 
the widest band spacing, although not the band widths. However, 
while such chemical reactions between phases are expected to be 
important in geological settings (Aharonov et al., 1997), their role 
was not evident in the laboratory experiments, which were de-
signed to study melt channels by stress alone and avoid reaction 
channelization (Holtzman et al., 2003).

Here we consider two-phase compaction theory that includes 
capillary effects from the interface between phases, i.e., the melt 
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and matrix (Stevenson, 1986; Bercovici et al., 2001; Bercovici and 
Ricard, 2003; Hier-Majumder et al., 2006), as a means for explain-
ing mode selection. However, capillary effects at the microscopic 
(i.e., pore/grain) scale cannot give the necessary effect (as will be 
demonstrated herein). In this paper, we propose a small adjust-
ment to existing theories that involves a diffuse interface effect, 
which occurs at very large gradients in melt volume fraction (e.g., 
Sun and Beckermann, 2004). Below we briefly develop the concept 
of the diffuse interface coincident with microscopic interfaces, and 
demonstrate how it can predict mode selection at the observed 
melt-band wavelengths.

2. Theory

2.1. Two-phase mixture interface and diffuse interface

Various two-phase flow theories treat the interface between 
phases and associated surface energy and surface tension by defin-
ing an interface area density (i.e., interface area per unit volume) 
α (see Ni and Beckerman, 1991; Bercovici et al., 2001). For ex-
ample, if a volume δV of mixture is filled with N spherical fluid 
bubbles of radius r, surrounded by an opposite matrix phase, then 
the fluid volume fraction is φ = N 4

3 πr3/δV , while α = N4πr2/δV ; 
in the same vein, the average curvature of this interface would be 
dα/dφ = (dα/dr)/(dφ/dr) = 2/r as expected.

However if the mixture has sharp gradients in fluid fraction 
∇φ, then the gradient region itself can appear as an effective or 
diffuse interface. Sun and Beckermann (2004) consider a diffuse 
interface in a mixture and invoke the formalism of phase-field the-
ory (Anderson et al., 1998; Chen, 2002; Moelans et al., 2008) to 
propose an adjusted model for interface density and curvature. We 
appeal to some of their concepts but diverge in other respects. One 
important deviation is that phase-field theory only has interfaces 
defined by gradients in the phase variable, while we have both 
a background interface from a more homogeneous distribution of 
phases (i.e., bubbles and grains) in addition to an effective diffuse 
interface caused by sharp gradients in the fluid volume fraction.

Although the interface density α may be affected by a diffuse 
interface, only the curvature appears in the dynamics and thus we 
need only specify how dα/dφ is altered. Indeed as shown in Ap-
pendix A, we infer an effective curvature

dα

dφ
= dA

dφ
− 1

A
∇2φ (1)

where A is the microscopic (pore and grain) scale interface area, 
which we assume is only a function of porosity (see Bercovici et 
al., 2001; Hier-Majumder et al., 2006). The two terms on the right 
of (1) are due to microscopic scale interface curvature originally 
described by Bercovici et al. (2001) (first term), and that due to 
sharp coherent structures in the porosity field (second term). For 
example, a coherent structure with a sharp gradient in porosity 
can resemble a macroscopic bubble wall separating low and high 
porosity regions, which then has a net effective surface tension on 
it. However, there is a continuum of coherent structures between 
weak gradients for which the diffuse interface will barely register, 
to sharper ones. Indeed, since A is a large zeroth-order term, the 
diffuse interface curvature term only becomes important for sharp 
gradients in φ. Equation (1) is the same as the mean curvature in-
ferred by Sun and Beckermann (2004), however we diverge from 
those authors by retaining (1) as the full effective interface curva-
ture, while they argue to remove the microscale curvature, i.e., the 
first term on the right of (1). We retain this term since it is re-
sponsible for driving phase self-separation and/or wetting. Indeed 
the 2nd term retards self-separation once the porosity gradients 
get very large, and leads to a steady state separation rather than 
run-away separation. But to allow initial capillary effects on the 

pore or grain scale, we retain the micro-scale curvature term. In 
the end, the new effective interface curvature dα/dφ can be em-
ployed in the appropriate two-phase theory (Bercovici et al., 2001;
Bercovici and Ricard, 2003).

2.2. Mass conservation

Conservation of mass in two-phase continuum mechanics dic-
tates a relation for the volume fraction φi of phase i (i.e., either 
phase), which, assuming both phases are incompressible and there 
is no mass exchange between phases, leads to

∂φi

∂t
+ ∇ · (φivi) = 0 (2)

where vi is the velocity of phase i. Summing these equations and 
noting that 

∑
i φi = 1, we arrive at

∇ · v̄ = 0 (3)

where v̄ = ∑
i φivi . We can also define the unsubscripted φ = φ1

as the volume fraction of the minor phase, here the fluid or melt 
phase. We also define the unsubscripted v = v2 as the velocity of 
the solid or matrix phase, and �v = v2 − v1 as the phase separa-
tion velocity. We can hence recast (2) and (3) as

Dφ

Dt
= (1 − φ)∇ · v (4)

and

∇ · v̄ = ∇ · (v − φ�v) = 0 (5)

where D/Dt = ∂/∂t + v · ∇ is the material derivative in the matrix 
frame of reference.

2.3. Dynamics

The conservation of momentum in a creeping two-phase 
medium is generally prescribed (following Bercovici and Ricard, 
2003, 2012)

0 = −φi∇�i + ∇ · (φiτ i) ± c�v

+ ωi
(
��∇φ + ∇(γ α)

)
(6)

where we neglect gravity for the application at hand, and where 
the internal pressure on phase i is �i , τ i is the deviatoric stress 
tensor in phase i, phase density is ρi , c is the coefficient of drag 
between phases, �� = �2 − �1, γ is the surface tension on the 
interface between phases, α is again the interface density, and ωi
is a weighting factor (such that 

∑
i ωi = 1) that accounts for how 

much surface tension is embedded in one phase relative to the 
other.

2.3.1. Constitutive laws and rheology
Since phase 1 is a melt we assume τ 1 ≈ 0 and ω1 = 0

(Bercovici and Ricard, 2003). The matrix deviatoric stress is thus 
denoted as τ = τ 2 and given by

τ = 2με̇ = μ

(
∇v + [∇v]t − 2

3
∇ · vI

)
(7)

where μ is the matrix viscosity, and ε̇ is the matrix deviatoric 
strain-rate tensor, [..]t implies tensor transpose and I is the iden-
tity tensor. In keeping with prior analysis (Katz et al., 2006), we 
allow that (1 − φ)μ is an effective viscosity given generally by

μeff = (1 − φ)μ = μ0�
(
φ, ε̇2)

= μ0e−b(φ−φ0)

(
ε̇2

ε̇2
0

) 1−n
2n

(8)
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