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The dynamics of magma ascent are controlled by the complex, interdependent processes of crystallisation, 
rheological evolution, gas exsolution, outgassing, non-ideal gas expansion and temperature evolution. 
Temperature changes within the conduit, in particular, play a key role on ascent dynamics, since 
temperature strongly controls the crystallisation process, which in turn has an impact on viscosity and 
thus on magma ascent rate. The cooling produced by gas expansion is opposed by the heat produced 
by crystallisation, and therefore the temperature profile within the conduit is quite complex. This 
complexity means that unravelling the dynamics controlling magma ascent requires a numerical model. 
Unfortunately, comprehensive, integrated models with full thermodynamic treatment of multiple phases 
and rheological evolution are challenging to produce, due to the numerical challenges involved. Until now, 
models have tended to focus on aspects of the problem, without a holistic approach in which petrological, 
thermodynamic, rheological and degassing processes, and their interactions, were all explicitly addressed 
and quantified.
Here, we present a new, multiphase steady-state model for magma ascent in which the main physical and 
chemical processes, such as crystallisation, degassing, outgassing, rheological evolution and temperature 
variations, are quantitatively calculated. Basaltic magma’s crystallisation and flow are sensitive to initial 
temperature and volatile content, and therefore we investigate temperature variations during magma 
ascent in a basaltic system with a range of volatile contents. As a test case, we use one of the most 
well-studied recent basaltic effusive eruptions: the 2007 eruption of Stromboli, Italy.
Assuming equilibrium crystallisation and exsolution, we compare the solutions obtained both with 
and without an isothermal constraint, finding that temperature variations within the conduit have a 
significant influence on the ascent dynamics and therefore cannot be ignored when modelling basaltic 
volcanism. Furthermore, we find good agreement between model results and volcanological observations 
when the non-isothermal condition is assumed. We investigate, through a sensitivity analysis, the role 
of magma chamber temperature on mass flow rate and crystal content. We find that a temperature 
variation of 30 K at the base of the conduit has a bigger effect on mass discharge rate than an increase 
of 1 wt% in water content. Finally, we find that whilst variations in initial CO2 concentration can affect 
the temperature, pressure and viscosity profiles along the conduit, they do not alter the macroscopic 
behaviour of the system.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Volcanoes exhibit a wide range of eruption styles, from rel-
atively slow effusive eruptions, generating lava flows and lava 
domes, to explosive eruptions, in which very large volumes of 
fragmented magma and volcanic gas are ejected high into the at-
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mosphere. Magma ascent dynamics in a volcanic conduit play a 
key role in determining the eruptive style of a volcano. However, 
due to the lack of direct observations in the conduit itself, numeri-
cal models, constrained with observational data, provide invaluable 
tools for quantitative insights into the complex magma ascent pro-
cesses.

Numerical modelling of magma ascent is challenging, due to 
the complex, interdependent processes of crystallisation, rheolog-
ical evolution, gas exsolution, outgassing, non-ideal gas expan-
sion and temperature evolution. Therefore, models of magma as-
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cent require simplifications to the governing equations and the 
numerical computation of the solution. Initial models assumed 
a single gas phase, isothermal conditions, no gas–magma sepa-
ration and crystal–free magma (e.g. Wilson, 1980; Wilson and 
Head, 1981). Later models reduced these simplifications, intro-
ducing gas–magma separation (e.g. Vergniolle and Jaupart, 1986;
Dobran, 1992), crystals (e.g. Papale and Dobran, 1994; Melnik and 
Sparks, 2002a) and different volatile species (e.g. Papale, 1999;
Papale, 2001). However, the temperature evolution of the mag-
matic mixture within the conduit remained a challenge. Melnik 
and Sparks (2002a) calculated a temperature profile within the 
conduit, but as a function of the dissolved water content, rather 
than an energy conservation equation. Starostin et al. (2005), pro-
posed a transient model where they solved also for the energy 
conservation equation, but considering no crystals in the mag-
matic mixture, and a single gas phase. In recent years, further 
models were proposed in the literature (e.g. Costa et al., 2007;
Kozono and Koyaguchi, 2009; Degruyter et al., 2012), but none of 
them have solved for the energy conservation equation, for differ-
ent volatile species and for different crystal components all at the 
same time. Such a solution is a requirement in order to examine 
the temperature evolution of magma during ascent, as well as the 
impact that changing volatile concentrations have on the magma 
ascent process.

Investigation of the role of volatiles is particularly important 
due to the recent, dramatic improvement in our ability to measure 
volcanic gas compositions (Allard et al., 2005; Aiuppa et al., 2007;
Burton et al., 2007a) and emission rates (Galle et al., 2003; Burton 
et al., 2009), using in-situ, ground- and space-based remote sens-
ing techniques. Measurements of gas flux allow constraints to be 
placed on magma mass flow rates both during an eruption and in 
quiescent periods (e.g. Francis et al., 1993), if the original volatile 
contents and degree of degassing of the magma are known. Vari-
ations in both gas flux and gas compositions can give clues to 
magma dynamics that may herald a change in activity (Duffell et 
al., 2003; Aiuppa et al., 2007).

Ideally, therefore, a numerical model of magma ascent would 
explicitly calculate different gas species exsolution behaviour and 
multiphase, separated gas and magma flow. In order to adequately 
describe flow dynamics a quantitative model of crystallisation
would also be required, capable of describing the behaviour of 
each significant mineral phase. The degree of crystallisation and 
dissolved water concentration would be an input to a model of 
viscosity, which would, in turn, control the flow dynamics. Fi-
nally, such a model should take account of the thermodynamics 
of all of the processes described above. Here, we present a new, 
integrated, numerical model of magma ascent which fulfils these 
requirements, and allows new insights into the evolution of tem-
perature and role of volatiles during magma ascent.

2. Steady-state conduit model

Our model is a steady-state development from the transient 
model presented by La Spina (2014). In that work, the govern-
ing multiphase equations for two-phase compressible flow (with 
two velocities and two pressures) was produced using the theory 
of thermodynamically compatible systems (Romenski et al., 2010). 
This approach, in an evolution from the classical one adopted in 
Melnik and Sparks (2002b), Costa et al. (2009b), Kozono and Koy-
aguchi (2012) and de’ Michieli Vitturi et al. (2013), allows the 
formulation of a conservative hyperbolic system of partial differ-
ential equations, coupled with non-differential source terms. Here, 
in order to better describe the multi-component nature of the sys-
tem, we extend the La Spina (2014) model including:

• ng different exsolved and dissolved gas species,

• nc different crystals,
• non-ideality for exsolved gas components through the Van der 

Walls equation of state.

The flow of the magmatic multiphase multi-component mix-
ture along the z-axis is treated as a continuum and the state of the 
two phases, denoted by the index k = l, g , is characterized by its 
volume fraction (αk), mass density (ρk), velocity (uk), and specific 
entropy (sk). The first phase represents a “liquid” phase, a mixture 
of melt, crystals and dissolved gas, while the second phase repre-
sents a “gas” phase, i.e. the bubbles of exsolved gases. Thus, for the 
volume fractions, the saturation constraint αl +αg = 1 holds. Since 
the second phase is always referred to as the exsolved gas phase, 
we will use the term gi to refer to the i-th gas component. The 
term di is used to refer to the i-th dissolved gas component, the 
subscript m is used for the melt, while c j is used to refer to the 
j-th crystal component.

Since the focus of our study is multiphase dynamics, sepa-
ration of the gas phase from the liquid phase is permitted (i.e. 
ul �= ug ); melt, crystals and dissolved gases have the same veloc-
ity (ul = um = udi = uc j ), whilst exsolved gas components cannot 
separate from one another (ug = ugi ). Different pressures between 
the gas and liquid phases are permitted (Pl �= P g where Pl = Pm =
Pdi = Pc j and P g = P gi ), but in this work we forced an instant 
equilibration of pressure, resulting in Pl = P g . Different phases are 
assumed to be in thermal equilibrium (T = Tm = Tdi = Tc j = T gi ).

The steady-state one-dimensional system of conservation equa-
tions is derived from the theory of thermodynamically compatible 
systems (Romenski et al., 2010), where the conservation equations 
of mass, momentum and energy are expressed not for separate 
phases, but for the whole mixture:
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where we have defined the mixture density as ρ = αlρl + αgαg

and the mixture velocity as u = xlul + xg ug , where xl and xg are 
respectively the mass fractions of the liquid and gas phase. Fur-
thermore g is the gravitational acceleration, μl is the viscosity of 
the liquid phase, and r is the conduit radius, which is assumed to 
be constant, el and eg are the specific internal energies, and sl and 
sg are the specific entropies.

Eq. (1) is the conservation equation for the mixture density. 
Eq. (2) is the balance law for the mixture momentum, such that 
the flow rate is driven by the pressure gradient and limited by 
gravity and the fluid viscosity. Eq. (3) is the mixture energy bal-
ance law, in which variations in total energy (the sum of kinetic 
and internal energy) are controlled by the energy lost due to 
the resistance to flow by gravity and friction. As in Melnik and 
Sparks (2002b), Costa et al. (2009b) and Degruyter et al. (2012), 
the viscous terms included in the momentum and mixture energy 
equations are derived from the Poiseuille approximation for 1D 
laminar flow. The model has been designed to describe only ef-
fusive activity, therefore no terms concerning fragmentation have 
been included in the model.

Furthermore, we include the balance law for the liquid volume 
fraction:
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