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Whether a magma body is able to produce eruptions and at what frequency remains a challenging 
problem in volcanology as it involves the nonlinear interplay of different processes acting over different 
time scales. Due to their complexity these are often considered independently in spite of their coupled 
nature. Here we consider an idealized model that focuses on the evolution of the thermodynamic state 
of the chamber (pressure, temperature, gas and crystal content) as new magma is injected into the 
chamber. The magma chamber cools in contact with the crust, which responds viscoelastically to the 
pressure accumulated during recharge and volatile exsolution. The magma is considered eruptible if the 
crystal volume fraction is smaller than 0.5. If a critical overpressure is reached, mass is released from 
the magma chamber until the lithostatic pressure is recovered. The setup of the model allows for rapid 
calculations that provide the opportunity to test the influence of competing processes on the evolution 
of the magma reservoir. We show how the frequency of eruptions depends on the timescale of injection, 
cooling, and viscous relaxation and develop a scaling law that relates these timescales to the eruption 
frequency. Based on these timescales we place different eruption triggering mechanisms (second boiling, 
mass injection, and buoyancy) in a coherent framework and evaluate the conditions needed to grow large 
magma reservoirs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Explosive eruption frequency of volcanoes is inversely corre-
lated with the associated erupted volume (Newhall and Self, 1982). 
Explosive eruptions produce volumes that range from <10−2 km3

being erupted nearly continuously (Houghton et al., 2013) to 
>103 km3 occurring less than once every 100,000 years (Mason 
et al., 2004; Deligne et al., 2010). This is due to the way magma 
ascends into crust, forms a volcanic plumbing system, and in-
teracts with its surroundings (Scandone et al., 2007). Small and 
frequent eruptions are governed by the conduit system that trans-
ports magma to the Earth’s surface (e.g., Voight et al., 1999; Burton 
et al., 2007), while the larger explosive eruptions are believed to 
be controlled by the magma reservoir dynamics in the upper crust 
(Jellinek and DePaolo, 2003; Caricchi et al., 2014; Malfait et al., 
2014). In particular, the evolution of a shallow magma chamber 
will have a dominant impact on the long-term eruption history 
of a volcano. To understand the nature of this impact the non-
linear interplay between the mechanisms governing the magma 
chamber’s evolution has been studied using mathematical mod-
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els (e.g., Marsh, 1981). Numerous models have been developed 
for understanding both the compositional and dynamical evolution 
of magma chambers (e.g., Mourtada-Bonnefoi et al., 1999; Tait et 
al., 1989; Jellinek and DePaolo, 2003; Spera and Bohrson, 2004;
Michaut and Jaupart, 2006; Fowler and Spera, 2008, 2010; Hu-
ber et al., 2009, 2010a, 2010b, 2011; Dufek and Bachmann, 2010;
Karlstrom et al., 2010).

Magma chambers will produce an eruption if they can initi-
ate and propagate a dyke that reaches the Earth’s surface. In this 
study we define an eruption to be the initiation of a dyke and do 
not consider whether it will reach the Earth’s surface (Taisne et 
al., 2011). A dyke can be nucleated by a chamber if it (i) con-
tains mobile magma (e.g., Marsh, 1981) and (ii) produces suffi-
cient overpressure (e.g., Rubin, 1995). In order to be mobile the 
magma needs to contain enough enthalpy so as to remain above 
a critical crystal fraction where it becomes mechanically locked 
(Marsh, 1981; Lejeune and Richet, 1995; Caricchi et al., 2007;
Champallier et al., 2008). This behavior is controlled by heat in-
flow provided from deeper sources, the chambers ability to flux 
heat out to the colder surrounding crust and the phase diagram 
of the magma. Overpressure can be generated by mass inflow 
(Blake, 1981; Jellinek and DePaolo, 2003), crystallization-induced 
exsolution (‘second boiling’; Blake, 1984; Tait et al., 1989; Folch 
and Marti, 1998; Snyder, 2000; Fowler and Spera, 2008, 2010), 
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Fig. 1. Schematic representation of the magma chamber box model. A constant 
rate of mass is injected into a spherical chamber of radius R with a homogeneous 
magma mixture while it is cooled by a colder, visco-elastic crustal shell of radius S . 
Crystallization and exsolution occur within the chamber changing the relative abun-
dances of the melt, crystal and gas phases. When a critical overpressure is reached 
before mechanical locking an eruption can occur. We track the evolution of the 
canonical variables pressure P , temperature T , and gas volume fraction εg , melt 
density ρm , crystal density ρX , and chamber volume V . All other quantities are de-
rived from these.

and buoyancy (Jellinek and DePaolo, 2003; Caricchi et al., 2014;
Malfait et al., 2014). External factors such as near-field seismic-
ity (Gottsmann et al., 2009), roof failure (Gregg et al., 2012), and 
tectonic extension (e.g., Catalano et al., 2014) can also affect the 
ability to initiate and propagate a dyke from the magma cham-
ber. The excess pressure from mass inflow and second boiling in 
the reservoir can be erased by an eruption, viscous relaxation of 
the crust or passive degassing. These essential ingredients for an 
eruption have been modeled separately, but need to be considered 
simultaneously to evaluate a chambers ability to erupt (Karlstrom 
et al., 2010).

We focus on the evolution of upper crustal silicic magma cham-
bers and the amount of eruptions they can potentially produce 
before becoming mechanically locked. Jellinek and DePaolo (2003)
have shown that in order for magma to accumulate and produce 
large-volume chambers the timescale of magma injection has to 
be greater than the timescale to relax the overpressure by crustal 
deformation. However, the timescale of injection has to be smaller 
than the cooling timescale in order to sustain enough heat and 
maintain a mobile magma batch within the crust (Annen, 2009;
Gelman et al., 2013). Building a large chamber thus requires an in-
flow rate high enough to keep the magma mobile, yet low enough 
to allow for mass accumulation by viscous relaxation of the crust. 
We develop a numerical model that considers all these timescales 
through simplified parameterizations. This allows us to simulate 
the coupling between the processes directly and to rapidly evaluate 
a large parameter space of different initial conditions. We analyze 
eruption occurrence resulting from the model as a function of the 
timescales involved and derive relationships between the eruption 
frequency, the magma chamber radius and the mass inflow rate.

2. Methods

We develop a box model to study the coupled processes con-
trolling magma chamber evolution (Fig. 1). The magma chamber is 

considered to be a homogeneous sphere of volume V and is as-
sumed to remain spherical at all time. This assumption allows us 
to describe the chamber by a single pressure P , temperature T , 
and volume fraction of melt εm , gas εg , and crystals εX and to de-
velop analytical expressions for the pressure buildup in the cham-
ber and the temperature field around the chamber as a function 
of time. The melt, gas, and crystal phase are assumed to be in 
thermodynamic equilibrium. We consider the processes of (i) mass 
injection (ii) crystallization, (iii) exsolution, (iv) cooling (v) viscous 
relaxation, and (vi) eruption. We assume mass is injected into the 
chamber at a constant rate. The magma chamber sits in a colder 
spherical crustal shell, which reacts visco-elastically to pressure 
changes in the chamber. The chamber can lose mass through an 
eruption if the pressure reaches a critical value before the crystal 
volume fraction is too high (here 0.5). We calculate the evolution 
of the independent variables P , T , and εg over time by solving 
(i) the conservation of total mass, (ii) the conservation of water, 
and (iii) the conservation of total enthalpy. We further introduce 
closure equations for the evolution of the melt density ρm , the 
crystal density ρX , and the chamber volume V , based on melt, 
crystal, and crustal properties, respectively. All other quantities can 
then be calculated as a function of the canonical variables P , T , εg , 
ρm , ρX , and V . The calculation of the magma chamber evolution 
is stopped when the crystal volume fraction reaches 0.5. Parame-
terizations for the equation of state of the gas phase, the melting 
curve, the solubility curve, the temperature field in the crust, and 
the viscosity of the crust are described in Appendix A. The symbols 
used are defined in Table 1.

2.1. Conservation of total mass

Our mathematical description of the model begins by consider-
ing the conservation of (total) mass,

dM(P , T , εg,ρm,ρX , V )

dt
= Ṁin − Ṁout, (1)

with t time, M the total mass, Ṁin the mass inflow rate, and Ṁout
the mass outflow rate. The mass inflow rate is considered to be a 
constant. The mass outflow rate is initially set to zero. Rheology 
experiments have shown a drastic decrease in magma mobility at 
a crystal volume fraction between 0.4 and 0.6 (Lejeune and Richet, 
1995; Caricchi et al., 2007; Champallier et al., 2008) and Rubin
(1995) reports dike growth can become critical at excess pressures 
between 10 MPa and 50 MPa. We therefore consider an eruption to 
occur when the crystal volume fraction is below 0.5 and a critical 
overpressure of (�P )c = 20 MPa is reached. Once these conditions 
are met, the mass outflow rate is set to Ṁout = 104 kg s−1. This 
is much faster than any other process considered in the chamber 
while being representative of published estimates of eruption rates 
(Pyle, 2000). Once the pressure returns to lithostatic, the mass out-
flow rate is reset to zero.

We wish to write the conservation of mass in its canonical 
form, i.e. as a function of the time derivatives of the independent 
variables P , T , and εg . To do so we will introduce the constitutive 
equations that we need as we proceed. Starting from the definition 
of total mass,

M(P , T , εg,ρm,ρX , V ) = ρ(P , T , εg,ρm,ρX )V (2)

with ρ the mixture (melt + crystals + gas) density and V the vol-
ume of the magma chamber, we can rewrite Eq. (1) as

1

ρ

dρ

dt
+ 1

V

dV

dt
= Ṁin − Ṁout

ρV
. (3)

The mixture density is defined as
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