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Volcanic eruptions are driven by the growth of gas bubbles in magma. Bubbles grow when dissolved 
volatile species, principally water, diffuse through the silicate melt and exsolve at the bubble wall. On 
rapid cooling, the melt quenches to glass, preserving the spatial distribution of water concentration 
around the bubbles (now vesicles), offering a window into pre-eruptive conditions. We measure the water 
distribution around vesicles in experimentally-vesiculated samples, with high spatial resolution. We find 
that, contrary to expectation, water concentration increases towards vesicles, indicating that water is 
resorbed from bubbles during cooling; textural evidence suggests that resorption occurs largely before 
the melt solidifies. Speciation data indicate that the molecular water distribution records resorption, 
whilst the hydroxyl distribution records earlier decompressive growth. Our results challenge the emerging 
paradigm that resorption indicates fluctuating pressure conditions, and lay the foundations for a new tool 
for reconstructing the eruptive history of natural volcanic products.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Bubbles nucleate when magmatic volatiles (species such as wa-
ter, CO2 and SO2, that are only weakly soluble in the silicate 
melt) exsolve from a supersaturated melt. Water is the most im-
portant volatile because it is usually the most abundant and be-
cause it strongly affects melt viscosity (Hess and Dingwell, 1996). 
It is dissolved in the melt as two principal species: molecular wa-
ter, H2Om, and hydroxyl groups, OH. As magma ascends, bubbles 
grow through decompressive expansion and continuing exsolution 
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of volatiles from the melt (Sparks, 1978). Together these processes 
control the bubble growth rate which, in turn, controls or influ-
ences almost every aspect of magma ascent and eruption, includ-
ing: magma vesicularity, buoyancy, rheology and permeability; the 
pressure gradient that drives the eruption; and the onset of magma 
fragmentation. Understanding and quantifying bubble growth is, 
therefore, one of the most fundamental challenges in physical vol-
canology.

Water exsolves from the melt, into a bubble, when its solubility 
in the melt decreases, and resorbs into the melt when its solubil-
ity increases. The resulting change in the water concentration at 
the bubble wall creates a chemical potential gradient in the melt, 
which drives diffusion towards a growing bubble and away from a 
shrinking bubble (Fig. 1). The water concentration profile may be 
preserved when the melt quenches to glass, offering the tantalis-
ing prospect of reconstructing the bubble’s history of growth and 
resorption. We quantify the spatial distribution of dissolved water 
and its species in experimentally-vesiculated magmatic glasses, us-
ing secondary ion mass spectrometry (SIMS)-calibrated backscatter 
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Fig. 1. Bubble growth and resorption. Schematic figure to show the pressure and 
temperature (P , T ) conditions required for a bubble to remain in equilibrium, to 
grow, or to resorb, with example H2Ot concentration profiles that result. Solid black 
lines indicate current bubble size; dashed grey lines indicate previous bubble size, 
hence whether bubble is growing or resorbing.

scanning electron microscope (BSEM) images (Humphreys et al., 
2008) and Fourier-transform infra-red (FTIR) imaging (e.g. Nichols 
and Wysoczanski, 2007), in order to test this hypothesis.

Two recent studies apply a similar conceptual framework to 
draw significant conclusions about conduit processes. Watkins et 
al. (2012) analyse volatile distributions around vesicles in obsidian 
clasts and find water concentration profiles consistent with bubble 
resorption (cf. Fig. 1). They infer a pressure increase in the volcanic 
conduit prior to eruption. Carey et al. (2013) study vesicle distribu-
tions in basaltic pyroclasts and find indirect evidence of resorption 
of bubbles prior to eruption, which they also interpret as evidence 
of a pressure increase in the conduit. Based on our data, we pro-
pose that bubble resorption may occur during the quench from 
melt to glass as H2O solubility increases with decreasing tempera-
ture, and present an alternative interpretation of these findings in 
Section 4.4.

Other workers have used textural evidence from experimental-
ly-vesiculated magma samples to investigate interactions between 
bubbles (Castro et al., 2012). They observe dimpled and sinuous 
glass films between vesicles, which they interpret as preserved ev-
idence of incipient coalescence of growing bubbles. We analyse 
water distribution in the same samples and offer an alternative 
interpretation for their observations, which is consistent with our 
conceptual model (Section 4.3).

1.1. Water in silicate melts

Interpretation of water distributions in glass relies on quantita-
tive models for water solubility and diffusivity. Experimental stud-
ies of various magma compositions show that, for crustal pressures 
relevant to magmatic degassing, solubility increases with increas-
ing pressure and decreasing temperature (Baker and Alletti, 2012;
Newman and Lowenstern, 2002) while diffusivity (D) increases 
with increasing temperature, decreasing pressure, and increasing 
water concentration (Ni and Zhang, 2008) (Fig. 2). Temperature ex-
erts a dominant control on water diffusivity and, to a lesser extent, 
on solubility; however, there remains a gap in data between am-
bient and magmatic temperatures, which includes the transition 
between melt and glass.

The two species of water present in glass (H2Om and OH) inter-
convert via the equilibrium reaction

H2Om(melt) + Oo
(melt) � 2OH(melt), (1)

Fig. 2. Controls on diffusivity and solubility of water. Variation in water solubility 
(upper) and diffusivity (lower) with pressure and temperature for rhyolite com-
position. A data gap exists between magmatic and ambient temperatures. High-T
solubility model is from Newman and Lowenstern (2002) showing proportion of 
H2Om and OH at equilibrium speciation; diffusivity data are from Ni and Zhang
(2008) assuming 4 wt% H2Ot with both H2Ot and H2Om diffusivity shown. Low 
temperature solubility (diamond) is taken from Anovitz et al. (1999); low tempera-
ture diffusivity data (for 0.1 MPa) are from Anovitz et al. (2006).

in which molecular water reacts with bridging oxygens (O◦) in the 
melt to produce hydroxyl groups that are bound to the silicate 
polymer framework (Stolper, 1982a). The ‘total water’ (H2Ot) con-
tent of a melt or glass is the sum of the contributions from H2Om
and OH. The position of the equilibrium of Eq. (1) (the ‘equilibrium 
speciation’) changes with pressure, temperature, H2Ot concentra-
tion and melt composition (Hui et al., 2008; Silver et al., 1990; 
Stolper, 1989, 1982a) (Fig. 2). The bound OH groups are effec-
tively immobile and H2Om is the diffusing species; consequently, 
OH concentration gradients form indirectly by diffusion of H2Om
and subsequent readjustment towards equilibrium speciation via 
Eq. (1) (Zhang et al., 1991). For identical conditions, DH2Om is 
therefore higher than DH2Ot (Fig. 2). At experimental (or magmatic) 
temperatures the rate of the species interconversion reaction is 
sufficiently fast that, following a perturbation to the system, equi-
librium speciation is re-established over timescales of milliseconds. 
As a result of the strong temperature-dependence of the reaction 
rate however, the time taken to achieve equilibrium speciation be-
comes much longer as temperature decreases, taking minutes to 
hours at ∼600 ◦C and days at ∼400 ◦C (Zhang et al., 1995, 1991).

2. Materials and methods

Samples are obtained from pre-existing experimental suites, 
and were manufactured under controlled conditions of pres-
sure (P ) and temperature (T ). P and T conditions are given in 
Table 1, along with references to the original studies; sample com-
positions are given in Table S1 in the Supplementary Information. 
The experiments were all designed to produce bubble populations 
with either equilibrium profiles (solubility experiments) or bubble 
growth profiles (decompression experiments) (Fig. 1).

2.1. Sample production

All samples were synthesised at high pressure (Psyn) and tem-
perature (Texp , constant throughout experiment) with excess water 
to form a starting melt that was water-saturated and fully equili-
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