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Southern Peru is located in the northern Central Andes, which is the highest plateau along an active
subduction zone. In this region, the Nazca slab changes from normal to flat subduction, with the
associated Holocene volcanism ceasing above the flat subduction regime. We use 6 s to 67 s period
surface wave signals from ambient noise cross-correlations and earthquake data, to image the shear
wave velocity (V S V ) structure to a depth of 140 km. A mid-crust low-velocity zone is revealed, and
is interpreted as partially molten rocks that are part of the Andean low-velocity zone. It is oblique to
the present trench, and possibly indicates the location of the volcanic arcs formed during the steepening
of the Oligocene flat slab beneath the Altiplano plateau. The recently subducted slab beneath the forearc
shows a decrease in velocity from the normal to flat subduction regime that might be related to hydration
during the formation of the Nazca ridge, which in turn may contribute to the buoyancy of the flat slab.
The mantle above the flat slab has a comparatively high velocity, which indicates the lack of melting
and thus explains the cessation of the volcanism above. A velocity contrast from crust to uppermost
mantle is imaged across the Cusco–Vilcanota Fault System, and is interpreted as the boundary between
two lithospheric blocks.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Southern Peru is an interesting area to study subduction,
orogeny and the related volcanism processes along an active con-
tinental margin. The dip of the subducted Nazca slab changes
from 30◦ in the southeast to nearly horizontal at a depth of
∼100 km in the northwest (Fig. 1). Closely linked with the sub-
duction process, the Quaternary volcanic arc is well developed
where the slab is steeper and is absent where the slab is nearly flat
(Allmendinger et al., 1997). This area is also characterized by the
over 4 km high orogeny of the Central Andes. The high topography
is widest above the normal subduction regime, and narrows con-
siderably to the northwest over the flat subduction regime. From
the coast to inland, the main tectonic units include the offshore
and onshore forearc region, the Western Cordillera, the Altiplano
plateau, and an eastern belt of fold and thrust structures com-
prising the Eastern Cordillera and the Sub-Andean Ranges (Fig. 1)
(Oncken et al., 2006). The major crustal thickening is suggested
to have initiated around 30–40 Ma (asynchronous for each tec-
tonic unit), and is continuing to present (Mamani et al., 2010;
Oncken et al., 2006).
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Recent studies in Southern Peru using receiver functions
(Phillips and Clayton, 2014; Phillips et al., 2012) suggest that the
crustal thickness changes from ∼20 km near the coast to ∼70 km
below the Altiplano plateau. The crustal P-wave structure under
the plateau has been investigated by an active seismic survey
along a profile from Peru to Bolivia, and is characterized by two
low-velocity layers at 9–12 km and 36–46 km depth ranges (Ocola
and Meyer, 1972). The deeper layer at the mid-crust depth is also
detected in the receiver function (Yuan et al., 2000) and ambient
noise surface wave (Ward et al., 2013), as well as other geophysical
observations (Schilling et al., 2006) in the Central Andes, and is in-
terpreted as a large volume of molten rocks (Schilling et al., 2006;
Yuan et al., 2000). The extensive crustal melting can be attributed
to the steepening of an Oligocene flat slab beneath the Altiplano
plateau and an early Miocene flat slab beneath the Puna plateau
(Kay and Coira, 2009; Ramos and Folguera, 2009). The mantle-
wedge convection and arc volcanism resumed when the flat slab
began to steepen, and because of the increase in the dip of the
slab, the arc migrated trench-ward from inland to the present lo-
cation (Allmendinger et al., 1997; Mamani et al., 2010) leading
to widespread magmatism and heat input into the crust, which
caused the crustal melting. While the magmatic addition is not as
important as tectonic shortening to the crustal thickening, it had a
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Fig. 1. Location of the seismic stations (dots) used in this study. The main units building the Central Andes are delineated with navy lines (modified from Oncken
et al., 2006). WC: Western Cordillera; EC: Eastern Cordillera; AP: Altiplano Plateau; SA: Sub-Andean Ranges. The Holocene volcanoes are denoted with white trian-
gles (data from http://www.volcano.si.edu/world). The thick black line is the Cusco–Vilcanota Fault System digitized from Carlier et al. (2005). Slab contours are from
http://earthquake.usgs.gov/research/data/slab, plotted at 20 km intervals. The Nazca fracture zone data are from http://www.soest.hawaii.edu/PT/GSFML. Ocean floor age data
are from http://www.earthbyte.org/Resources/Agegrid/2008/grids, plotted in 2.5 Ma intervals. Topography data are from http://glcf.umd.edu/data/srtm.

major effect on rheology and the mechanical behavior of the crust
(Allmendinger et al., 1997).

The Peruvian flat subduction is not unique, as approximately
10 percent of present day subduction zones are considered to have
flat slabs (Gutscher et al., 2000; Skinner and Clayton, 2013). Many
of the present normal subduction regimes, such as the ones under
Altiplano and Puna plateaux (Ramos and Folguera, 2009) men-
tioned above, are also considered to have experienced flat sub-
duction in the past. The major driving forces of the flat sub-
duction are still unknown, but some possible causes are summa-
rized in Gutscher (2002), among which the subduction of thick-
ened oceanic crust (e.g. the Nazca ridge and the Inca Plateau
Gutscher et al., 1999) is suggested to be the dominant one. How-
ever, Skinner and Clayton (2013) argue through plate reconstruc-
tions that there is no clear correlation between the arrival of the
thickened crust and the onset of slab flattening in South Amer-
ica. In addition, geodynamical modeling (Gerya et al., 2009) shows
that the buoyancy of the thickened crust itself is not sufficient to
raise the slab to the flat orientation, even including a less-dense
depleted mantle associated with the formation of a thick crust
(Abbott, 1991). The importance of the enhanced mantle wedge
suction caused by the thick continental craton near the subduc-
tion zone is raised by several other studies (Manea et al., 2012;
O’Driscoll et al., 2012). For example, O’Driscoll et al. (2012) sug-
gested that the subduction towards the Amazonian Craton of South
America, which is close to the trench, contributed to the flattening
of the slab beneath the Altiplano plateau during the late Eocene
and Oligocene, while the steepening of this Oligocene flat slab was
associated with a change in the subduction direction, which re-
sulted in a weakened wedge suction.

In this paper, we present the velocity structure in the crust and
uppermost mantle from surface wave analysis. We show the extent
of the mid-crust Andean low-velocity zone in the study region, the
two lithosphere blocks across the Cusco–Vilcanota Fault System,
and the velocity differences between the flat and normal subduc-
tion regimes. This study complements the receiver function studies
of Phillips et al. (2012) and Phillips and Clayton (2014) that focuses
on the velocity discontinuities (e.g. the Moho and slab depths) of
this area.

2. Data and method

The data used in this study are primarily from a box-like ar-
ray deployed progressively from June 2008 to February 2013 in
Southern Peru (Fig. 1). The array is composed of ∼150 broadband
stations (PE, PF, PG, PH lines), each with ∼2 yrs of deployment.
We also use data from 8 broadband stations from the CAUGHT
and PULSE experiments (Ward et al., 2013). We correct the data
for the instrument response, integrate the velocity records to dis-
placement, and use the vertical 1-sample/s channel to obtain the
Rayleigh wave signals.

The phase velocity of Rayleigh wave is sensitive to the shear
velocities over a range of depths, but is most sensitive to a depth
range that is approximately one-third of its wavelength. By com-
bining the phase velocities at various periods, we are able to invert
for the shear wave velocity structure as a function of depth. For
periods 6 s to 25 s, we use the surface wave signals from the am-
bient noise cross-correlations, and for 25 s to 67 s, we use the
earthquake surface wave signals. We first make a phase velocity
map of the area for each period and then perform a 1-D structure
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