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The classical equation of closure temperature (TC ) in thermochronometry (Dodson, 1973), assumed
(i) no storage limitation for the accumulating radiogenic product, (ii) a negligible product concentration
at the initial temperature of cooling T0, and (iii) a negligible product loss at the final (present-day)
temperature T P . A subsequent extension (Ganguly and Tirone, 1999) provided a simple correction for
systems cooling from an arbitrary T0, at which presence of an initial concentration profile may affect
final concentrations. Here, we use a combination of analytical and numerical solutions to derive a
general expression for the effective closure temperature in (i) systems which cool between arbitrary
initial and final temperatures, potentially still suffering from thermal product loss at T P (termed ‘leaky’),
and (ii) systems which may contain a physical limit on the maximum amount of product that can be
stored (termed ‘saturating’). While all conservative results can be easily reproduced, an extended use of
our formulation provides meaningful effective closure temperatures even when the standard calculation
schemes fail. For a first-order loss radiometric system governed by K (T ) = s exp(−E/RT ), where E
[J mol−1] and s [s−1] are the Arrhenius parameters and R is the gas constant, we find that the effective
closure temperature TC (T0, T P ) is given by:

TC (T0, T P ) =
{

1

T P
− R/E

τλ − τ K P
ln

[
1 + τλ − τ K P

(τ K P )τλe−τ K P

(
Γ (τλ, τ K P ) − Γ (τλ, τ K0)

)]}−1

where K0 and K P [s−1] are shorthand for K (T0) and K (T P ), respectively, λ [s−1] the production rate,
τ [s] a time constant, and Γ (a, z) the upper incomplete gamma function. Under conventional conditions,
our solution reduces to Dodson’s formula. Although the solution strictly applies only to systems where
1/T increases linearly with time, it is nevertheless a useful approximation for a broad range of cooling
functions in systems where closure occurs close to the system’s initial/final thermal boundary conditions.
We clarify the use and the meaning of TC (T0, T P ) by drawing a comparison between (i) a hypothetical
application of apatite U–Pb dating (TC ≈ 450 ◦C) on Venus (mean surface temperature of 450 ◦C, leaky
behaviour), and (ii) the recently introduced thermochronometric application of optically stimulated
luminescence (OSL) dating on Earth (both leaky and saturating behaviour).

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Thermochronometry is based on the observation that transport
of radiogenic/fissionogenic products within their host crystals is
temperature-dependent. Consequently, a crystal may behave as

* Corresponding author at: Department of Earth Sciences, ETH-Zurich, 8092
Zurich, Switzerland.

E-mail address: benny.guralnik@gmail.com (B. Guralnik).

an ‘open’ or a ‘closed’ system to a certain product, depending
on the rate of its thermal diffusion/annealing. In noble gas ther-
mochronometers (Harrison and Zeitler, 2005), the frequency K
[s−1] at which radiogenic atoms get thermally mobilised and re-
moved from their production sites tends to follow an Arrhenius
law:

K (T ) = s exp(−E/RT ) (1)
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Fig. 1. Evolution of temperature (top panel), radiogenic product concentration (bot-
tom panel), and the apparent age (central panel) in a thermochronometric system
cooling from an arbitrary time in the past (t0) until the present-day (tP ; thick
circles on panels mark present-day conditions). By definition, Dodson’s effective
closure temperature can be graphically found (thin red arrowed line on all pan-
els; Eq. (6)) by converting present-day product/parent ratio (n/p)P (bottom panel)
into an apparent age tapp (central panel), rolling back an equivalent amount of
time to find the closure time tC (central panel), and reading off the corresponding
palaeotemperature TC (red arrowhead on top panel). In Dodson’s standard approx-
imation (thick grey arrowed line on central and top panels; Eq. (3)) the initial step
of converting concentration into age is omitted, and the closure time tC is found
directly by intersecting the linear asymptote to apparent age (1:1 line) with the
time axis (central panel). For the thermal scenario shown, both calculation schemes
(Eqs. (6) and (3), respectively) yield an identical result (overlapping red and grey ar-
rowheads on top panel, respectively). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

where s [s−1] is the frequency factor, E [J mol−1] the activation
energy, R the gas constant, and T [K] the ambient temperature
(Langmuir, 1923; Philibert, 2006). The linear proportionality be-
tween log(K ) and T −1, determined by diffusion and annealing
experiments in the laboratory, yields the kinetic parameters E
and s which can then be extrapolated across a wide range of tem-
peratures and geological timescales.

The recognition that any radiometric age represents the time at
which the corresponding system cooled below an effective thermal
threshold to enable product accumulation, led to the abstract con-
cept of ‘closure temperature’ TC (Dodson, 1973) and promoted the
widespread use of thermochronometry in earth sciences. Dodson
defined TC as ‘the temperature of the system at the time repre-
sented by its apparent age’ (Dodson, 1973, 1979). Fig. 1 tracks a
thermochronometer through the evolution of its temperature (top
panel), concentration (bottom panel), and the apparent age (central
panel) through time. Closure temperature TC can be graphically
found using either (i) Dodson’s precise wording or (ii) Dodson’s

classical approximation. Note that the verbatim definition of TC

(thin red arrowed line; Eq. (6)) involves measuring the daughter/
parent ratio (n/p)P at the present-day time tP (circle on lower
panel), converting this concentration into an apparent age tapp (cir-
cle on central panel) to obtain the time of closure tC = tP − tapp ,
and finally reading off the corresponding palaeotemperature TC

(red arrowhead on top panel); Dodson’s widely-used approxima-
tion (thick grey arrowed line; Eq. (3)) skips the first step of age
determination, but typically yields identical results.

Noting that TC must depend on the precise cooling history,
Dodson (1973) adopted a benchmark thermal scenario in which
1/T increases linearly with time:

E/RT = E/RT0 + t/τ (2)

where T0 [K] is the initial temperature, t [s] the time and τ [s] the
‘time constant’ (Dodson, 1973). The latter, frequently called ‘char-
acteristic time’ (e.g. Ganguly and Tirone, 1999), corresponds to the
time taken for E/RT to increase by 1, or for K to diminish by a
factor e−1 (through substitution of Eq. (2) into Eq. (1)). This hy-
perbolic relationship of 1/T ∝ t turned out to be particularly use-
ful, since it allowed approximation of both exponentially-decaying
and semi-linear cooling scenarios (e.g. Newton’s cooling law vs.
rapid exhumation) through a simple adjustment of τ , T0 and T P .
Equipped with such prescribed cooling history, Dodson proceeded
to solve the governing rate equation (Eq. (A.1) in Appendix A) to
obtain a general approximation for TC :

E/RTC = ln
(
τ sγ −1), γ = [

Γ (λτ + 1)
]1/λτ

(3)

(Dodson, 1973, Eq. (14d)) where Γ (z) is the Gamma function
(Abramowitz and Stegun, 1964). The essence of Dodson’s approxi-
mation is visualised by the thick grey arrowed line in Fig. 1, clari-
fying one frequently overlooked fact: while n/p may evolve in an
absolutely non-linear manner (e.g., in the general case of a short-
lived parent), it is strictly the apparent age tapp (Fig. 1, black curve
on central panel) which at large times asymptotes to a line with
a slope of 1 (meaning that the concentration-derived apparent age
paces in synchrony with time, i.e. dtapp/dt → 1). Calculation of TC
using Eq. (3) simply amounts to finding the linear asymptote to
the apparent age function at large times (Fig. 1, 1:1 line on central
panel), intersecting it with the time axis to get tC , and reading off
the corresponding palaeotemperature TC (Fig. 1, grey arrowhead
on top panel). For the typical thermal scenario depicted on Fig. 1,
both the verbatim and the approximated calculation schemes (thin
red and thick grey arrowed lines, respectively) yield indistinguish-
able values of TC .

The classical way to reconstruct thermal histories via the clo-
sure temperature concept is to measure a set of (tapp, TC ) val-
ues using multiple thermochronometric systems, each providing
a marker on the time–temperature space (Wagner et al., 1977).
Note, that unlike the apparent age tapp , which exhibits a power–
law relationship with τ (Eq. (A.7)), the closure temperature Tc

does only weakly depend on τ (Dodson, 1973). For end-user con-
venience, τ has been typically replaced with τ = RT 2

C /E Ṫ (Dodson,
1973), where Ṫ = −dT /dt is the linear cooling rate in the vicin-
ity of closure, and a much more ‘intuitive’ quantity than τ . The
dependence of TC on Ṫ can be exploited to approximate the cool-
ing history of known-age rocks (Ganguly and Tirone, 2009), and
used as a baseline for methodological comparison between differ-
ent thermochronometers (e.g. Reiners and Brandon, 2006).

An increasing interest in low-temperature proxies capable of
recording the very last stages of rock cooling (e.g., Reiners and
Ehlers, 2005) has been typified by the development of ther-
mochronometers based on 4He/3He profiling (Shuster and Farley,
2005) and optically stimulated luminescence (OSL) dating (Herman
et al., 2010). Although Dodson’s TC concept may at first seem to
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