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a b s t r a c t

The Gamburtsev Subglacial Mountains are regarded as a key nucleation site for the Antarctic Ice Sheet and
they retain a unique long-term record of pre-glacial and early glacial landscape evolution. Here, we use a
range of morphometric analyses to constrain the nature of early glaciation and subsequent ice sheet
evolution in the interior of East Antarctica, using a new digital elevation model of the Gamburtsev Subglacial
Mountains, derived from an extensive airborne radar survey. We find that an inherited fluvial landscape
confirms the existence of the Gamburtsev Subglacial Mountains prior to the onset of glaciation at the
Eocene–Oligocene climate boundary (ca. 34 Ma). Features characteristic of glaciation, at a range of scales, are
evident across the mountains. High elevation alpine valley heads, akin to cirques, identified throughout the
mountains, are interpreted as evidence for early phases of glaciation in East Antarctica. The equilibrium line
altitudes associated with these features, combined with information from fossil plant assemblages, suggest
that they formed at, or prior to, 34 Ma. It cannot be ruled out that they may have been eroded by ephemeral
ice between the Late Cretaceous and the Eocene (100–34 Ma). Hanging valleys, overdeepenings, truncated
spurs and steep-sided, linear valley networks are indicative of a more widespread alpine glaciation in this
region. These features represent ice growth at, or before, 33.7 Ma and provide a minimum estimate for the
scale of the East Antarctic Ice Sheet between ca. 34 and 14 Ma, when dynamic fluctuations in ice extent are
recorded at the coast of Antarctica. The implications are that the early East Antarctic Ice Sheet grew rapidly
and developed a cold-based core that preserved the alpine landscape. The patterns of landscape evolution
identified provide the earliest evidence for the development of the East Antarctic Ice Sheet and can be used
to test coupled ice–climate evolution models.

& 2013 The Authors. Published by Elsevier B.V.

1. Introduction

East Antarctica hosts the largest and longest-lived ice sheet on
Earth. Despite the importance of the East Antarctic Ice Sheet (EAIS) as
both a responder to, and potential driver of global environmental and
sea-level change, there are significant uncertainties about its early
history and the scale and duration of its subsequent fluctuations
(Barrett, 1996, 1999; Denton et al., 1984; Miller et al., 2008; Naish
et al., 2008; Siegert and Florindo, 2009; Wise et al., 1991; Zachos
et al., 1992, 2001). The EAIS is thought to have grown rapidly (Coxall
et al., 2005) in response to a major decline in CO2 levels at ca. 34 Ma

(DeConto and Pollard, 2003) and nucleated around the major high-
lands of East Antarctica, including the Gamburtsev Subglacial Moun-
tains (hereafter, Gamburtsevs). Efforts to constrain the nature of early
ice sheet growth in central East Antarctica have relied upon largely
coastal records of EAIS behaviour, because of the paucity of data from
the continental interior. However, geophysical and geological data
from the interior are precisely what is required if the early patterns of
glaciation in East Antarctica are to be constrained. Evidence of past
EAIS behaviour is most likely to be preserved at sites where long-
term erosion rates are extremely low and/or where cold-based
ice preserves the landscape at the base of the ice sheet (Fabel
et al., 2002; Naslund, 1997; Sugden et al., 1993, 1999; Summerfield
et al., 1999). These conditions are found in central East Antarctica,
where low ice velocities at Dome A (Rignot et al., 2011) are coupled
with extensive areas of cold-based ice (Llubes et al., 2006), thus
hindering subglacial erosion, as revealed in offshore deposits
(Cox et al., 2010). Located in this region, the Gamburtsevs therefore
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represent a key site where a long-term record of both pre-glacial and
glacial landscape evolution is likely to be found (Bo et al., 2009;
Jamieson and Sugden, 2008; Jamieson et al., 2010).

Our aim is to understand the long-term landscape evolution of
the Gamburtsevs, and in doing so to elucidate the dynamics of the
early EAIS. In order to achieve this, we analyse the geomorphology
of the Gamburtsevs at a regional-scale, using a new detailed and
extensive airborne radar dataset, collected during the Interna-
tional Polar Year, as part of the Antarctica's Gamburtsev Province
(AGAP) project (Bell et al., 2011; Ferraccioli et al., 2011). The AGAP
survey provided a high resolution, regional, digital elevation
model (DEM) of subglacial topography that greatly improves on
the detail of previous continental-scale bedrock topography com-
pilations (Le Brocq et al., 2010; Lythe et al., 2001) and the coverage
of local surveys (Bo et al., 2009). We employ a series of morpho-
metric techniques to quantify the geometry of the landscape and
thereby map geomorphic features indicative of specific erosion
processes, including fluvial erosion, warm-based glacial erosion
and subglacial preservation. Our results are used to interpret the
processes and patterns of landscape evolution in the Gamburtsevs,
and to discuss their implications for the nature and timing of
Antarctic Ice Sheet evolution.

2. Physiographic setting and origin of the Gamburtsev
Subglacial Mountains

The Gamburtsevs lie beneath Dome A in the interior of East
Antarctica (Fig. 1). They are bounded by the Pensacola Pole Basin to
the south, Lake Vostok to the east and the Lambert Rift to the north.
First discovered in 1958 by a Russian gravity and seismic survey
(Sorokhtin et al., 1959), the Gamburtsevs are thought to be located in
the middle of a Precambrian craton (Boger, 2011) and yet, unexpect-
edly, they retain a high elevation and significant relief. Prior to the
AGAP project, the morphology, subglacial geology and deeper crustal
structure of the Gamburtsevs were all poorly constrained, so that
several contrasting models describing their origin remained largely
untested (Cox et al., 2010; Fitzsimons, 2003; Sleep, 2006; van de
Flierdt et al., 2008; Veevers, 1994). These models invoke ages for the
Gamburtsevs' formation from the Cambrian (ca. 500 Ma) to the
Cenozoic (30 Ma). However, based on analysis of the AGAP data,
Ferraccioli et al. (2011) suggested that continental rifting processes
provided the tectonic trigger for uplift of the Gamburtsevs at ca.
100 Ma. This was followed by fluvial (65.5–34 Ma) and then glacial
erosion (34–14 Ma), causing renewed peak uplift.

3. Climate and ice sheet evolution

Past EAIS behaviour and key phases in Antarctic climate, ice
sheet and surface process evolution over the last 100 Myr are
derived from a mix of stratigraphic, geomorphological, geophysical
and proxy data, combined with numerical modelling approaches
(Supplementary Fig. S1). In the near-tropical climate conditions of
the Early Eocene ‘Greenhouse World’, fluvial surface processes
dominated (Baroni et al., 2005; Cooper et al., 2001; Francis et al.,
2008; Pross et al., 2012). During these warmer periods, small,
dynamic, ephemeral ice sheets may have formed on high elevation
areas in the interior of East Antarctica (Birkenmajer et al., 2005;
Cramer et al., 2011; Miller et al., 2005, 2008; Tripati et al., 2005). At
the Eocene–Oligocene (E–O) boundary (ca. 34 Ma) a shift to a cool-
temperate climate marked the onset of widespread East Antarctic
glaciation (Liu et al., 2009; Zachos et al., 2001, 2008). On- and off-
shore sedimentary sequences indicate that between ca. 34 and
14 Ma (Supplementary Fig. S1, grey box) the ice masses on East
Antarctica were warm-based and dynamic (Baroni et al., 2008),

fluctuating in pace with the Earth's orbital cycles (Escutia et al.,
2005; Naish et al., 2001; Zachos et al., 1997, 2001). Glacial erosion
was therefore a dominant agent of landscape modification, until a
further decline in temperatures at ca. 14 Ma (Anderson et al., 2011;
Lewis et al., 2007) resulted in a polar desert climate (Miller et al.,
2008; Sugden and Denton, 2004; Zachos et al., 2001). This
established a more stable continental-scale ice sheet and caused
a switch from largely warm-based glaciation to a polythermal
system (Anderson et al., 2011), where cold-based ice covered
significant portions of the continent, reducing erosion rates across
these areas (Armienti and Baroni, 1999; Ehrmann, 2001; Lewis
et al., 2007; Miller et al., 2008).

4. Methodology

To understand the long-term patterns of landscape evolution in
the Gamburtsevs, we analysed the geometry of an isostatically
corrected DEM of subglacial topography generated from the AGAP
airborne radar data. We then interpreted the morphometry in the
context of former processes of landscape evolution and ice sheet
dynamics. Our specific objectives were to

� generate a higher resolution DEM of the subglacial landscape of
the Gamburtsevs;

� identify features that are representative of surface processes,
which operate at local, regional and continental scales under
warm and cold climates; and

� interpret patterns of long-term landscape evolution in the
Gamburtsevs in the context of the interactions between topo-
graphy, climate and ice sheet behaviour.

4.1. Data collection and DEM

The AGAP project completed a major aerogeophysical survey of
the Gamburtsev Province during the 2008/09 field season, using
two Twin Otter aircraft. 120,000 line-km of ice-penetrating radar,
magnetic, gravity and laser measurements were collected in a
detailed survey grid, with a line spacing of 5 km and tie lines
33 km apart (Bell et al., 2011; Ferraccioli et al., 2011). The study
area covers 182,000 km2, encompassing most of the Gamburtsevs
and extending into the southernmost margin of the eastern branch
of the Lambert rift system (Fig. 1). Following earlier work (Siegert
et al., 2005; Young et al., 2011), the airborne radar data are used as
the basis from which subglacial landscapes and past ice sheet
dynamics can be interpreted.

Cross-over analysis of the AGAP radar flight-line data indicates
RMS errors in bedrock elevation of 64 m with a mean of 74 m.
The bedrock elevation data were gridded onto a 1 km grid mesh
using an iterative finite difference interpolation technique that
employs a nested grid strategy to calculate successively finer grids
until the user specified resolution is obtained (Hutchinson, 1988,
1989). Our grid was compared against previous DEMs of the
Gamburtsevs area generated from the same data, using minimum
curvature (Bell et al., 2011) and kriging algorithms (Ferraccioli
et al., 2011). All three methods generate landscapes whose detailed
structure is closely comparable. The gridded DEM was isostatically
corrected to compensate for the removal of the modern ice sheet
load (Ferraccioli et al., 2011) and to produce a topography that is
hydrologically sensible (Fig. 1). The correction grid assumes a con-
tinuous plate with a uniform rigidity (average uplift of 500 m) and
ignores the isostatic component of subsequent uplift related to
erosion by incision (Wilson et al., 2012). The rebounded DEM was
used as the basis for subsequent morphometric analyses, enabling us
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