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Themagnitude ofmassmovements,whichmay be expressed by their dimension in terms of area or volume, is an
important component of intensity together with velocity. In the case of slow-moving deep-seated landslides, the
expected magnitude is the prevalent parameter for defining intensity when assessed as a spatially distributed
variable in a given area. In particular, the frequency–volume statistics of past landslides may be used to under-
stand and predict themagnitude of new landslides and reactivations. In this paperwe study the spatial properties
of volume frequency distributions in the Arno river basin (Central Italy, about 9100 km2). The overall landslide
inventory taken into account (around 27,500 events) shows a power-law scaling of volumes for values greater
than a cutoff value of about 2 × 104 m3. We explore the variability of the power-law exponent in the geographic
space by setting up local subsets of the inventory based on neighbourhoodswith radii between 5 and 50 km.We
found that the power-law exponentα varies according to geographic position and that the exponent itself can be
treated as a random space variable with autocorrelation properties both at local and regional scale. We use this
finding to devise a simple method to map the magnitude frequency distribution in space and to create maps of
exceeding probability of landslide volume for risk analysis. We also study the causes of spatial variation of α
by analysing the dependence of power-law properties on geological and geomorphological factors, and we
find that structural settings and valley density exert a strong influence on mass movement dimensions.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

A number of natural hazards are known to occur as stochastic pro-
cesses whose magnitude frequency follows a non-normal distribution.
Often, such a distribution assumes a form compatible with a power-
law, an exponential or an extreme-value distribution. Widely known
examples are e.g. the distribution of earthquakes, snow avalanches,
landslides, volcanic explosions, epidemic spreading, meteorite impacts,
forest fires and floods (Malamud and Turcotte, 1999; Malamud and
Turcotte, 2006; Turcotte and Malamud, 2004; Clauset and Shalizi,
2009). The exponential decrease of frequency with increasing magni-
tude seems to be connected to patterns of self-organized criticality in
complex systems aswell as to the tendency towards optimal energy ex-
penditure configurations (Bak et al., 1988; Rodriguez-Iturbe and
Rinaldo, 1997), ubiquitous in natural systems. Sediment transfer pulses,
including mass movements, do not seem to deviate from such a behav-
iour, even though the power-law form of magnitude–frequency distri-
bution (MFD) is regarded as being mainly applicable to medium and
large size occurrences.

Several studies address the statistical properties ofMFDsmaking use
of specific databases of landslides collected in several parts of the world
(Guzzetti et al., 2002; van den Eeckhaut et al., 2007; Guzzetti et al.,

2009; Trigila et al., 2010). In most cases such datasets constitute the
sum of occurrences over large time spans and are thus called “historical
inventories”. In other cases, conversely, the properties of landslide en-
sembles triggered by a uniquemeteorological or seismic event are stud-
ied (Larsen and Torres-Sanchez, 1998; Dai and Lee, 2001). In the
majority of the published material, the authors find a portion of the
area (or volume) distribution (usually the higher tail) to follow a single
or double power-law, expressed, according to the different cases, as a
Gamma, Double Gamma, 3-parameters Gamma, Pareto, Generalized Pa-
reto or Double Pareto distribution with a lower cutoff Mmin. According
to some views (see e.g. Stark and Hovius, 2001; Guthrie and Evans,
2004) the left part of the MFD (i.e. magnitude m b Mmin) may be
modelled as a positive-exponent power-low, but suffers from devia-
tions and noise due to possible undersampling effects (Guzzetti et al.,
2002; Malamud et al., 2004). Small occurrences are easily missed by
field surveys or rendered invisible by vegetation regrowth, human ac-
tivities and weathering processes on hillslopes (Guzzetti et al. 2002).
This is especially true in historical inventories, where mass movements
of different age are mapped together thus producing a statistical
oversampling of the medium-large size events compared to smaller
ones (Malamud et al., 2004).

Malamud et al. (2004) and Guzzetti et al. (2002) hypothesized that
the left part of the distribution can be modelled by a different form of
the same relationship, such as e.g. a power-law with different parame-
ters and, possibly, a positive exponent. This inverse trend would be
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explained by the prevalence of cohesive over frictional forces in the soil
at small scales (Malamud et al., 2004; Van den Eeckhaut et al., 2007;
Stark and Guzzetti, 2009). In such a case, the authors model the MFD
of mass movements by supposing the presence of a double power-law
distribution with different parameters (both with negative α1 and α2

exponents) across a characteristic cutoff scale Mmin whilst, for dimen-
sions smaller than a second cutoff M*min, by using a positive power-
law (β N 0), in which the increasing influence of cohesion forces for
smaller scales limits the number of mass movements that can develop.

The ubiquitous tendency of landslide hazard to occur according to
this power-law scaling offers important insights on the underlying
mechanisms for mass movement triggering and evolution, making it
possible to predict the overall impact of climate changes in the near fu-
ture trends for landslide-related risks (Convertino et al., 2013). Another
important aspect of using known MFDs for mass movements is that
they may be used as a robust basis for the forecasting of the magnitude
(and thus of the intensity as defined by Fell et al., 2008 and Hungr,
1997), a fundamental step in natural hazard and risk prediction. In
fact, for large areas, where slope-scale single-landslide intensity estima-
tion is not possible, a statistical approachmay often be the best solution,
based on theMFD of area or volume. However, to be able to actually im-
plement this approach, more quantitative information on the spatial
variability of theMFDs of landslides in the geographical space is needed,
a topic almost totally lacking in the relevant literature. In fact, in almost
all cases (see e.g. Van den Eeckhaut et al., 2007 for a comprehensive list-
ing) an entire landslide inventory is taken as awhole to produce a single
MFD to be modelled by a given power-law scaling. This has been done
for study areas ranging from 101 to 104 km2 where very different geo-
physical and environmental conditions leading to sediment loss may
coexist. Therefore, some important questions are still unanswered so
far, such as: how well do such general MFDs depict local patterns of
landslidemagnitude?What happens to a scaling relationshipwhenpro-
gressively moving from an area to an adjacent one with different geo-
physical settings? Can the power-law exponents be treated as random
space variables with autocorrelation properties? In this paper we at-
tempt to give a contribution in this direction. In particular, we study
the spatial characteristics of the power-law scaling in a large and well-
studied landslide volume frequency distribution (Arno river basin, cen-
tral Italy, counting N27,000 events over about 9100 km2) by computing
a spatially variable set of MFD parameters as random space variables.
We determine the spatial autocorrelation properties of such variables
and propose a new simple tool to map themagnitude exceeding proba-
bilities as a proxy for landslide intensity or potential destructive power.
Then, we analyse the relationships between MFD parameters and envi-
ronmental settings to explore the possible causes of this spatial
variability.

2. Materials and methods

2.1. Working hypothesis

The starting hypothesis at the basis of this work is that the MFD of
area and volume of mapped landslides in a given region shows a
power-law scaling, at least for medium and large sized occurrences,
and it is not spatially constant but varies continuously in space. As a cor-
ollary, the overall MFD computed over the entire inventory is an aver-
age quantity, which is locally stationary only for very homogeneous
environmental conditions. We will, henceforth, refer to such environ-
mental conditions as Landslide Conditioning Variables (LCVs), which
may include geology, geomorphology, local climate, vegetation, land
use, geomorphometry and hydrology. The hypothesis is supported by
numerous studies as summarised by Van den Eeckhaut et al. (2007)
for all types of landslide collections, either event-related or historical,
made up by single or mixed typologies (such as e.g. shallow or deep
seated slides, falls, and debris flows), related to large or small areas.
We will also test this hypothesis experimentally over the test area.

The characteristics of the inventory in the study area (Catani et al.,
2005) are well suited to this approach because the majority of mapped
landslides has slow rates of movement according to Fell et al. (2008)
(rotational earth slides and solifluctions)which implies that their kinet-
ic energy is essentially linked to dimensions, hence volume. In particu-
lar, earth slides constitute 77.4% of the total number and, furthermore,
they consistently show higher-than-average volumes (Table 1) so that
the right side of the empirical MFD is almost only occupied by a single
typology.

A derivation of the main hypothesis is that a suitable subsetting of
the entire inventory would produce sub-inventories equally represen-
tative in statistical terms that can be separately studied to understand
possible linkages to the local characteristics of the sub-area. Therefore,
the power-law fitting of the subsets would present MFD parameters lo-
cally valid that could then be compared to each other and, upon verifi-
cation of continuity, treated as random space functions with definite
autocorrelation properties. The second hypothesis is that, once the
first one is verified and the local MFD parameters for the distribution
chosen are autocorrelated in space, we can use geostatistical tools to
study, interpolate andmap the scaling properties of landslides thus pro-
ducing magnitude estimation maps. In the study area, Catani et al.
(2005) and Convertino et al. (2013) have previously computed area fre-
quency statistics for the landslide inventory described in the area sec-
tion. The authors found that a power-law scaling is a valid model for
explaining the frequency distribution of mapped landslide areas for
values greater than a cutoff of about 104 m2 (1 ha). In particular, they
adopted a power-law type distribution in the continuous form:

p að Þda ¼ Pr a≤A≤aþ dað Þ ¼ Ca−αda ð1Þ

where a is the landslide area and C is a normalization constant. For very
small values of a this probability density diverges so that theremust be a
limiting or cutoff value to the power-law behaviour that can be denoted
by amin. In landslide systems, for both areas and volumes, the exponent
α is always greater than unity. In this case, for landslide volume, we can
find that:

p vð Þ ¼ α−1
vmin

v
vmin

� �−α

ð2Þ

where v is volume and vmin is the lower cutoff volume for which the
power-law scaling holds. In the cumulative form:

P vð Þ ¼
Z∞
v

p v0ð Þdv0 ¼ v
vmin

� �−αþ1

ð3Þ

In particular, if we limit the population to the tail of the empirical
distribution (v ≥ vmin) it must be:

P ≥vminð Þ ¼
Z∞
vmin

p vð Þdv ¼ 1 ð4Þ

So that the exceedance probability for a given volume V (≥vmin) can
be obtained by integration of the previous equation in a given interval

Table 1
Landslide typology in the Arno river basin according to the latest available inventory. Only
the three typologies considered in the study are reported.

Landslide
typology

Frequency
(%)

Total area
(m2)

Average area
(m2)

Average volume
(m3)

Earthslides 77.4 5.9 × 108 2.9 × 104 1.7 × 105

Flows 4.7 0.2 × 108 1.5 × 104 1.5 × 104

Solifluctions 17.9 1.9 × 108 3.7 × 104 3.7 × 104
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