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Research on genetic relationships between soil and landforms has largely improved soilmapping. Recent techno-
logical advances have created innovative methods for modelling the spatial soil variation from digital elevation
models (DEMs) and remote sensors. This generates new opportunities for the application of geomorphology to
soil mapping. This study applied a method based on artificial neural networks and fuzzy clustering to recognize
digital classes of land surfaces in amountainous area in north-central Venezuela. The spatial variation of the fuzzy
memberships exposed the areas where each class predominates, while the class centres helped to recognize the
topographic attributes and vegetation cover of each class. The obtained classes of terrain revealed the structure of
the land surface, which showed regional differences in climate, vegetation, and topography and landscape stabil-
ity. The land-surface classeswere subdivided on the basis of the geological substratum to produce landscape clas-
ses that additionally considered the influence of soil parent material. These classes were used as a framework for
soil sampling. A redundancy analysis confirmed that changes of landscape classes explained the variation in soil
properties (p=0.01), and a Kruskal–Wallis test showed significant differences (p=0.01) in clay, hydraulic con-
ductivity, soil organic carbon, base saturation, and exchangeable Ca andMg between classes. Thus, the produced
landscape classes correspond to three-dimensional bodies that differ in soil conditions. Some changes of land-
surface classes coincide with abrupt boundaries in the landscape, such as ridges and thalwegs. However, as the
model is continuous, it disclosed the remaining variation between those boundaries.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The recognition that soil classes of similar characteristics usually
occupy analogous positions on the landscape induced the application
of geomorphology to support soil mapping. This opened a new field of
research on soil-geomorphology (e.g. Conacher and Dalrymple, 1977;
Elizalde and Jaimes, 1989; Daniels and Hammer, 1992; Gerrard, 1993;
Birkeland, 1999; Schaetzl and Anderson, 2005; Zinck, 2013) and led to
the production of comprehensive soil-landscape maps, which embody
genetic relationships between soil and landforms (Zinck, 2013). How-
ever, this soil mapping approach has been criticized because conven-
tional classification of landforms is usually based on a qualitative
characterization of the configuration of the land surface (McBratney
et al., 2003). This introduces subjectivity and biases with respect to se-
lection of criteria for terrain segmentation and placement of boundaries
(Bishop et al., 2012).

Nowadays, digital soil mapping (DSM) offers new options to model
the spatial soil variation based on empirical relationships between soil
properties and environmental covariates (McBratney et al., 2003; Scull

et al., 2003; Dobos et al., 2006). The latter include some topographic
and hydrological parameters computed from digital elevation models
(DEMs) (e.g. altitude, slope, aspect curvature, relative position and the
topographic wetness index) as well as values obtained from remote
sensors (e.g. vegetation and soil indices). There are many successful ex-
amples of digital mapping of soil properties such as soil depth, pH, clay
content, carbon content, A-horizon sand/clay content, Bt1-horizon
sand/clay content, depth to Bt1-horizon, loess thickness, and depth to
weathered bedrock (Penížek and Borûvka, 2006; Zhu et al., 2010; Sun
et al., 2012). DSM basically consists in producing a predictive model of
soil classes or individual soil attributes from a set of training data, by
means of regression, classification or any other prediction method.
The training data include a set of soil data recorded from sample points
at known locations, and a set of environmental covariates. The predic-
tion rules are fitted using the calibration data and subsequently applied
at other locationswhere data on the environmental covariates are avail-
able. Usually, an independent set of soil data, known as a validation data
set, is utilized to assess the certainty of predictions (McBratney et al.,
2003; Scull et al., 2003; Dobos et al., 2006). The success of DSM requires:
1) sufficient predictor variables recorded in the whole area, 2) enough
soil data points to fit a relationship with the environmental covariates,
3) predictive functions flexible enough to fit a nonlinear relationship,
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and 4) a strong soil–environment relationship (McBratney et al., 2003).
Furthermore, it is desirable to have an even distribution of the sampling
points over the mapped area to cover the whole variation of soil–
environment relationships.

From the view of the research on soil–landform relationships, DSM
has been criticized because it tends to see the soil as a surface instead
of a three-dimensional body. Besides, the genetic relationships between
soils and landforms and their effect on landscape evolution are not suf-
ficiently reflected in the current digital approach (Zinck, 2013). In addi-
tion, the condition of having a large set of evenly distributed data points
is not easily achieved where access is difficult, for example, in moun-
tainous areas. On the other hand, DEMs have been utilized in geomor-
phological research to identify morphometric classes as elementary
forms of terrain that can be recognized at the resolution considered
(e.g. Burrough et al., 2000; Adediran et al., 2004; Bolongaro-Crevenna
et al., 2005; Arrell et al., 2007; Minár and Evans, 2008; Ehsani and
Quiel, 2008; Ehsani et al., 2010). Consequently, digital methods have
created not only new opportunities for modelling soil variability and
identifying elementary forms of terrain, but also new challenges to
apply these methods to model genetic relationships between soil and
landforms.

Relationships between environmental variables and soil properties
tend to be complex and nonlinear, particularly over large areas and
zones with irregular topography (Lark, 1999; Lagacherie and Voltz,
2000; Zhu, 2000; McBratney et al., 2003; Zhao et al., 2009; Ballabio,
2009). Hence, methods which allowmodelling complex nonlinear pro-
cesses and working with uncertain and noisy phenomena, seem useful
for exploring these relationships. These methods include unsupervised
classifications based on artificial neural networks (ANNs) (e.g. Zhu,
2000; Fidêncio et al., 2001; Zhao et al., 2009) and fuzzy sets (e.g. Lark,
1999; Zhu et al., 2001; Beucher et al., 2014; Akumu et al., 2015). Several
researchers have used the ANNmodel known as self-organizingmap or
SOM (Kohonen, 1990) to produce unsupervised classifications of
multidimensional data on phenomena related to earth sciences
(e.g. Carniel et al., 2009; Das and Basudhar, 2009; Zhang et al., 2009;
Ehsani et al., 2010). Schmitt et al. (2014) applied both SOM and fuzzy
logic in a two-stage clustering approach to characterize a fluvial system
by fuzzy signatures of hydromorphological drivers. First, they applied
the neural network to derive a self-organizing map from a high-
dimensional input data set. Then, they use the fuzzy c-means algorithm
(Bezdek et al., 1984) to identify characteristic driver signatures from the
neurons and thus to derive a hydromorphological classification of the
entire fluvial network. Bezdek et al. (1992) integrated the SOM model
with the fuzzy c-means algorithm in a single application. The resulting
neuro-fuzzy approach, named the fuzzy Kohonen clustering network
or FKCN (Bezdek et al., 1992), combines the advantages of a self-
organized model of ANN with the optimization procedure of fuzzy c-
means, and the capability provided by this algorithm to generate an
output of continuous-values instead of hard clustering (Bezdek et al.,
1992; Wu et al., 2004).

The choice of environmental covariates can become a key issue
when a little known area is to be classified. According to Pike et al.
(2009), three kinds of parameters can be derived from a DEM: 1) pa-
rameters describing the local morphology of the land surface, 2) those
that reflect the potential movement of material over the land surface,
and 3) those that relate geomorphometry to climatology or meteorolo-
gy. In addition, some indices derived from remote sensing data can also
be used. Most authors have utilized slope gradient as an input variable
(e.g. Burrough et al., 2000; Adediran et al., 2004; Bolongaro-Crevenna
et al., 2005; Arrell et al., 2007; Minár and Evans, 2008; Iwahashi and
Pike, 2007; Ehsani and Quiel, 2008; Ehsani et al., 2010), but the use of
other covariates varies between authors. A second problem to be faced
when a new area is classified into fuzzy sets is to determine how
many classes are required and the fuzziness of such classes. The latter
is defined by the value of the exponent Φ of the fuzzy c-means algo-
rithm. The number of classes and the value of Φ can be established on

the basis of experience or intuition of the researcher. However, some
authors have used indices calculated from the data to select the best
combination of the number of classes and fuzzy exponent (e.g.
McBratney and de Gruijter, 1992; Odeh et al., 1992; Fadili et al., 2001;
Fridgen et al., 2004).

This study proposes an approach for digital modelling of soil–
landscape relationships, based on the application of the neuro-fuzzy al-
gorithm FKCN to identify land-surface classes from a DEM and remote
sensing data. The proposal was appraised in a mountainous area with
limited information in North-Central Venezuela. Given the little prior
knowledge of the area, the research addressed the choice of environ-
mental covariates, the number of classes and the degree of fuzziness
of these classes. The results of the digital classification were analysed,
along with complementary information on geology, to produce a geo-
morphological model of the studied area, which was used as a frame-
work for soil sampling. The data recorded from the sampling sites
were utilized as a basis to assess the relationship between soil attributes
and the geomorphological model.

2. The study area

The study area covered 6760 ha in the mountain ranges of north-
central Venezuela, at approximately 10°2′ North and 67°7′ West,
(Fig. 1). The relief is mountainous, with an altitude ranging from
334 to 1405mabove sea level and amean slope gradient of 40%. The av-
erage annual rainfall is 1100mmand the average annual temperature is
22 °C. Recurrent fires and extensive grazing maintain a predominantly
herbaceous cover, interrupted only by forest corridors alongwaterways
and areas of evergreen forest on the highlands, above 900 m. Present
along the area are two geologic formations: El Chino–El Cañometatobas
(Vccn) and El Carmen metalavas (Vcca), which belong to metavolcanic
and metasedimentary rocks of the Villa de Cura group (Urbani and
Rodríguez, 2004). Vccn consists of metamorphosed basalts and associ-
ated volcanic sedimentary rocks while Vcca is made of mafic metalavas,
interbeddedwithmetasedimentary rocks and othermetavolcanic rocks
(Shagam, 1960). The area is part of an importantwatershed extensively
affected by soil erosion;where there is an imminent need to implement
programmes of sustainable management. However, land-use planning
in such awatershed is restrained by the lack of reliable soil and geomor-
phological information.

3. Methods

3.1. Algorithm

The FKCNmodel is the result of an integration of the SOMneural net-
work and the fuzzy c-means algorithm (Bezdek et al., 1992). The SOM
model consists of two vector layers: input and output (Kohonen,
1990; Lin and Lee, 1996; Ehsani andQuiel, 2008). Each input vector con-
tains the normalized values of the input variables at a given cell of the
model. In the output layer a number of neurons, equal to the previously
established amount of classes is arranged on a grid, so that each node is
connected to all the others by specific topological relationships. Each
neuron is described by a n-dimensional vector of weights, where n is
equal to the number of variables in the input data. The weight vectors
are initialized with random values and then the network is adjusted in
an iterative and sequential manner. When a new input vector is pre-
sented to the network, the processing unit in the output layer computes
the distance between the input vector and each of the weight vectors.
The neuron at the shortest distance from the input vector is chosen as
the winner node. Once this node is found, its weight vector and those
of the nodes that belong to a predefined neighbourhood are updated,
and thus moved closer to the input vector. This process is performed it-
eratively until the winning node remains the same, or a certain number
of iterations is reached. The FKCNmodel adds a layer ofmemberships to
the different classes, based on fuzzy-c-means, to the distance layer of
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