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This study had three aims. The first was to assess the performance of the weights-of-evidence (WofE) landslide
susceptibility model in areas that are very different in terms of size, geoenvironmental settings, and landslide
types. The second was to test the appropriate strategies to sample the mapped landslide polygon. The final aim
was to evaluate the performance of the method to changes in the landslide sample size used to train the
model. The method was applied to two areas: the Fella River basin (eastern Italian Alps) containing debris
flows, and Buzau County (Romanian Carpathians) with shallow landslides. The three landslide sampling strate-
gies usedwere: (1) the landslide scarp centroid, (2) points populating the scarp on a 50-mgrid, and (3) the entire
scarp polygon. The highest success rates were obtained when sampling shallow landslides as 50-m grid-points
and debris flow scarps as polygons. Prediction rates were highest when using the entire scarp polygon method
for both landslide types. The sample size test using the landslide centroids showed that a sample of 104 debris
flow scarps was sufficient to predict the remaining 941 debris flows in the Fella River basin, while 161 shallow
landslides was the minimum required number to predict the remaining 1451 scarps in Buzau County. Below
these landslide sample thresholds, model performance was too low. However, using more landslides than the
threshold produced a plateau effectwith little to no increase in the model performance rates.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The spatial prediction of landslides in the form of susceptibility as-
sessment studies have been applied now for the past 30 years with
new techniques continuously being developed and updated. An over-
whelming amount of literature has been published on the different
methods that have been used throughout the years. The extensive
guidelines, reviews, and overviews related to landslide hazard and risk
(Varnes, 1984; Soeters and van Westen, 1996; van Westen et al., 1997,
2008; Aleotti and Chowdhury, 1999; Guzzetti et al., 1999; van Westen,
2000; Dai et al., 2002; Crozier and Glade, 2005; Glade and Crozier,
2005; Wang et al., 2005; Fell et al., 2008; Corominas et al., 2013)
generally divide landslide susceptibility methods into qualitative
(e.g., heuristic, geomorphological analysis, expert-based index/
weighting) or (semi-) quantitative approaches (e.g., statistical and de-
terministic analysis). The quantitative statisticalmethods follow a single
important assumption, that slope instability factors causing landslides
in the pastwill statistically determine the spatial probability of landslide

occurrence in the future (Soeters and van Westen, 1996). According to
this assumption, the predictive capability of statistical susceptibility
methods relies on two input data: the inventory of past landslide events
and the landslide causative factor maps (also called landslide predispos-
ing factors, landslide conditional factors, or slope instability factors). The
way in which landslides are represented and sampled in a GIS deter-
mines how the causative factor information is extracted for susceptibil-
itymapping and is therefore a very important aspect in landslide hazard
zonation studies.

Landslides are generallymappedusing vector-based representations
of the landslide data, which are represented by points (Brenning, 2005;
Galli et al., 2008), polygons (vanWesten et al., 2000; Chung and Fabbri,
2005), and lines (Donati and Turrini, 2002). In some cases, slope failures
can be directly mapped as raster data, for example by semiautomated
mapping from remote-sensing imagery (Brenning, 2009; Mondini
et al., 2011). The mapping representation is determined by the type
and availability of data, the spatial scale of the analysis, the purpose of
the study, and the mapping methods used, among others (Soeters and
van Westen, 1996; Guzzetti et al., 1999; van Westen, 2004; Glade and
Crozier, 2005; vanWesten et al., 2008). All statistical landslide suscepti-
bility zonations require the selection of mapping units, which are the
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subdivisions that make up the susceptibility map. A variety of mapping
units are reported in the literature (Guzzetti et al., 1999; Van Den
Eeckhaut et al., 2009). The choice of themapping unit is crucial because
it also determines how landslides will be sampled to prepare the train-
ing and prediction (validation) subsets for the susceptibility modeling
that can be vector-based (Carrara et al., 1995; Guzzetti et al., 2005;
Galli et al., 2008) or grid-based (Carrara, 1983; van Westen, 1993;
Chung and Fabbri, 1999; Remondo et al., 2003).

In grid-based (also referred to as pixel or raster-based) susceptibility
assessments, landslide mapping representations are either overlaid in
their original format (e.g., points, polygons) on grid-cell causative factor
maps to directly extract data from the factor maps or are converted to a
rastermap and then used for data extraction. According to the literature
concerning grid-based landslide susceptibility mapping, four general
strategies are used to sample landslide pixels:

(1) The landslide is sampled as a single pixel (Atkinson and Massari,
1998; Van Den Eeckhaut et al., 2006; Thiery et al., 2007; Yilmaz,
2010; Piacentini et al., 2012). Usually, the pixel is the centroid
of the entire landslide or the scarp area. The single pixel can be
selected to represent the top-point of a landslide placed by an ex-
pert on the initiation area, which is not necessarily the centroid
(Qi et al., 2010; Gorum et al., 2011; Xu et al., 2014). The single
pixel is often applied if landslides have been mapped directly as
points or if the landslides in polygon format are not reliable for
the susceptibility analysis (e.g., data scarcity, size of the area,
scale-related issues, etc.). When selecting a single grid-cell to
represent a landslide, the rest of the mapping units (grid-cells)
that could still be located within a landslide polygon are consid-
ered nonlandslide areas.

(2) All the pixels within the entire landslide body or the scarp area
can be sampled as landslide pixels (Ayalew and Yamagishi,
2005; Poli and Sterlacchini, 2007; Blahut et al., 2010;
Sterlacchini et al., 2011; Regmi et al., 2013; Petschko et al.,
2014). In this case, all pixels located outside the landslide poly-
gons are considered as nonlandslide areas.

(3) The main scarp upper edge (MSUE) approach selects pixels on
and around the landslide crown-line (Donati and Turrini, 2002;
Clerici et al., 2006;Jurko et al., 2006), which basically is the
upper edge of the landslide scarp area. The MSUE method was
applied for the following reasons (Donati and Turrini, 2002;
Clerici et al., 2006): the upper edge of the scarp area was the
most identifiable feature in the landslidemapping, the entire de-
pletion zone (scarp area) was less visible owing to recovery of
the slope, and the scarp areawas often partly covered by the accu-
mulation zone, making the boundary between the two zones dif-
ficult to identify. Similar to the seed-cell methodology, the MSUE
method is able to represent the landslide using pixels in undis-
turbed morphological conditions by projecting an artificial crown-
line at a certain distance from the original crown-line,with the dis-
tance and length assigned by the expert (Clerici et al., 2006).

(4) The seed-cell approach (Süzen and Doyuran, 2004; Nefeslioglu
et al., 2008; Yilmaz, 2010; Demir et al., 2013; San, 2014) selects
pixels within a buffer polygon around the upper landslide scarp
area and sometimes part of the flanks of the accumulation zone.
The buffer distance, which determines the number of cells
representing the landslide, is defined by an expert. The purpose
of this method according to Süzen and Doyuran (2004) is to con-
sider ‘that the best undisturbed morphological conditions (condi-
tions before landslide occurrence) would be extracted from the
vicinity of the landslide polygon itself’. However, this could lead
to problems in cases where landslide boundaries coincide with
main morphological boundaries (e.g., top of the landslide at the
crest of a ridge).

A number of studies have compared the effect of different sampling
strategies applied to landslide susceptibility zonation. Poli and

Sterlacchini (2007) studied the landslide centroid and a selection of
points populating the polygon every 50 and 20 m. They found that
one point every 50 m within a landslide polygon performed better
than using the single centroid or the 20-m points. Yilmaz (2010) com-
pared the susceptibility using the scarp polygon, seed cells and a single
point. According to Yilmaz (2010), ‘validations of the obtainedmaps in-
dicated that the more realistic results obtained from the analyses were
obtained using the scarp sampling strategy, however, it was relative-
ly similar with the seed cells strategy. It can be evaluated that the
two strategies, such as scarp and seed cells considered, have relative-
ly similar accuracy’. The single point sampling had lower perfor-
mance rates. Simon et al. (2013) compared the extraction of slope
angle information between landslide polygons and their centroids.
They concluded that using centroid points could have some disad-
vantages, such as abstracting landslide causative information not lo-
cated at the actual initiation points but located in less significant
factor classes or even outside the actual polygon boundary because
of using the point of gravity.

Once the expert determines which grid-cells are considered land-
slides or nonlandslide areas, a selection procedure is required to define
the sampling size of pixels thatwill be exploited to train and validate the
susceptibility model. The modeler needs to decide not only the number
of landslide pixels but also the number of nonlandslide pixels to be used
in assessing the success and prediction capability of themodel. The ratio
between landslide and nonlandslide areas depends, among others, on
the type of statistical model used in the susceptibility assessment. As
Heckmann et al. (2014) summarized for logistic regression and other
types of regression analysis, the ratio often ranges between 1:1 and
1:10. However, larger ratios have also been used (Melchiorre et al.,
2008; Felicísimo et al., 2013; Heckmann et al., 2014), including in
other types of statistical techniques, such as the Bayesian approaches,
where sometimes all the nonlandslide pixels are applied in the analysis
(Blahut et al., 2010; Regmi et al., 2010).

Recent studies have been conducted to understand the effects of
landslide sample size on susceptibility mapping and prediction (Hjort
and Marmion, 2008; Heckmann et al., 2014; Petschko et al., 2014).
Hjort andMarmion (2008) assessed the effect of sample size on the sus-
ceptibility of geomorphological processes such as permafrost and soli-
fluction in an area of 600 km2 using model resolutions of 1 and 25 ha.
They found that for a sufficient model performance, producing AUC
values ranging between 0.80 and 0.95, 100 to 200 samples were re-
quired of a population of more than 1700 data points. Heckmann et al.
(2014) sampled 1000 nonlandslide subsets ranging the sample size
from 50 to 5000 pixels of 5-m resolution in two small areas of 7 and
19 km2, while sampling 81 landslide pixels. They recommended a min-
imum of 300–350 nonlandslide pixels, corresponding to a ratio of 1:3.7
to 1:4.3 (81:300–81:350) and obtaining an average area under the ROC
curve of 0.83. Petschko et al. (2014) applied a 1:1 ratio of landslide to
nonlandslide pixels of 5-m resolution in an area of 15,850 km2 and
found that as the sample size increased from 50 to 12,562 pixels (total
number of landslides), so did the AUC of the ROC curve from 0.76 to
0.84, with a slight plateauing at 3200 pixels or 25% of the landslide in-
ventory. The literature indicates that no ideal fixed percentage or ratio
exists between landslide and nonlandslide sample sizes and is further
dependent on the statistical technique used in the susceptibility
analysis.

Most of the research analyzing the effects of landslide sampling
strategies and landslide sample sizes on susceptibility mapping have ei-
ther used regression analysis techniques (e.g., logistic, linear, multivar-
iate regression, etc.) or machine learning methods (e.g., artificial
neural networks, generalized boosting method, etc.). Furthermore,
these works were conducted in single case study areas and mainly
using single landslide types. Despite theWofEmethod beingwidely ap-
plied, the influence of landslide sample sizes in training the model, and
the subsequent effect on performance and prediction rates, has rarely
been conducted.
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