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Eskers record the signature of channelisedmeltwater drainageduring deglaciation providing vital information on
the nature and evolution of subglacial drainage. In this paper, we compare the spatial pattern of eskers beneath
the former Laurentide Ice Sheet with subglacial drainage routes diagnosed at discrete time intervals from the
results of a numerical ice-sheetmodel. Perhaps surprisingly,we show that eskers predominantly occur in regions
where modelled subglacial water flow is low. Eskers and modelled subglacial drainage routes were found to
typically match over distances of b10 km, and most eskers show a better agreement with the routes close to
the ice margin just prior to deglaciation. This supports a time-transgressive esker pattern, with formation in
short (b10km) segments of conduit close behind a retreating icemargin, and probably associatedwith thin, stag-
nant or sluggish ice. Esker-forming conduits were probably dominated by supraglacially fed meltwater inputs.
We also show that modelled subglacial drainage routes containing the largest concentrations of meltwater
show a close correlation with palaeo-ice stream locations. The paucity of eskers along the terrestrial portion of
these palaeo-ice streams and meltwater routes is probably because of the prevalence of distributed drainage
and the high erosion potential of fast-flowing ice.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Eskers are slightly sinuous ridges composed of glaciofluvial sand and
gravel that are deposited in subglacial, englacial, or supraglacial drain-
age channels (e.g., Banerjee and McDonald, 1975; Brennand, 2000;
Storrar et al., 2014a). They can extend for tens to hundreds of kilometres
(taking into account small gaps), reach in excess of 50 m in height, and
are typically arranged roughly parallel to each other (e.g., Prest et al.,
1968; Banerjee and McDonald, 1975; Shilts, 1984; Shreve, 1985a,b;
Aylsworth and Shilts, 1989; Clark and Walder, 1994; Boulton et al.,
2009; Storrar et al., 2014a,b). Eskers may therefore provide vital infor-
mation about channelised drainage. This is significant because observa-
tions from modern ice sheets reveal the important role of water in
lubricating the bed and facilitating rapid ice flow (Bartholomew et al.,
2011; Sundal et al., 2011). In particular, the configuration of the sub-
glacial drainage network and how it evolves to accommodate water
inputs is critical (e.g., Budd et al., 1979; Alley et al., 1986; Iken and
Bindschadler, 1986). Two end-member drainage configurations are
typically envisaged (e.g., Walder and Fowler, 1994): (i) an efficient

channelised system commonly associated with lower water pressures,
lower ice velocities, and higher water discharges; and (ii) an inefficient
distributed system (e.g., linked cavities, braided canals, and porous till
layer) commonly associated with higher water pressures, higher ice
velocities, and lowerwater discharges. However, because of the difficul-
ties in directly observing the drainage of water at the bed of ice masses,
we have a limited understanding of thedistribution and geometry of the
subglacial drainage network and a lack of data at the spatial and tempo-
ral scales necessary to constrain or test subglacial hydrological models
(e.g., Hewitt, 2011; Werder et al., 2013).

Presently, investigating eskers located under contemporary ice
sheets is physically difficult. Thus the imprint of eskers recorded on
the bed of former ice sheets has a clear advantage over data from con-
temporary ice sheets because we can directly observe the expression
of meltwater drainage over large spatial scales. However, despite
the use of eskers to reconstruct and constrain ice-retreat histories
(e.g., Dyke and Prest, 1987; Margold et al., 2013), very few studies
have investigated their pattern at the ice-sheet scale (Aylsworth and
Shilts, 1989; Clark and Walder, 1994; Storrar et al., 2014a,b). This is
because it is not known whether eskers form synchronously in long
conduits (cf. Brennand, 1994) or if they represent a time-integrated sig-
nature of drainage deposition throughout deglaciation (e.g., Banerjee
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and McDonald, 1975; Shilts, 1984; Dyke and Dredge, 1989; Kleman
et al., 1997; Hooke and Fastook, 2007). Consequently, the extraction
and interpretation of information about where they form in relation to
subglacial water generation and ice dynamics is difficult.

A new approach to understanding the pattern of eskers is to
compare their distribution and orientation with numerical models of
subglacial meltwater drainage at discrete intervals throughout deglaci-
ation. In this study our aim is to compare the expression of eskers on the
bed of the former Laurentide Ice Sheet (LIS) with subglacial drainage
routes predicted from the results of a numerical ice sheet model. This
builds on previous work that has compared eskers and hydraulic gradi-
ent routes at glaciers (e.g., Syverson et al., 1994), but represents the first
attempt to compare modelled drainage with eskers at the ice-sheet
scale and at discrete time intervals.

2. Methods

2.1. Mapping esker networks

This paper uses 3749 interpolated eskers (mostly N2 km long)
mapped by Storrar et al. (2013). The crestlines of esker ridges were
mapped from Landsat 7 Enhanced Thematic Mapper (ETM) + imagery
of Canada, which has a resolution of ~30 m and ~15 m in the panchro-
matic band. Eskers were typically mapped at a scale of 1:40,000 and
were identified based on the criteria set out by Margold and Jansson
(2012). Shorter eskers (b2 km long) were more difficult to identify in
Landsat imagery. Comparison with mapping from aerial photographs
suggests that ~75% of eskers were identified and that 81% of those
missed are b2 km long (Storrar et al., 2013).

To enable the effective comparison of eskers with modelled subgla-
cial drainage routes, we used the interpolated esker data set produced
by Storrar et al. (2014a). This data set was derived by interpolating a
straight line (over short distances in the majority of cases) between
aligned esker ridges that appear genetically related (i.e., formed in the
same conduit) andmergingwith themapped ridges to produce a single
esker. It was produced to fill gaps thatmay have resulted from fragmen-
tary deposition, post-depositional erosion or, submergence beneath
lakes and is therefore thought to give a better indication of where the
esker-forming conduits were located (Storrar et al., 2014a). We refer
to this data set throughout the paper simply as ‘eskers’.

2.2. Modelling subglacial meltwater drainage

Subglacial meltwater drainage was modelled using the method
outlined in Livingstone et al. (2013a,b). Hydraulic potential surfaces
(ɸ) of the LIS were calculated from the Shreve equation (Shreve, 1972):

ϕ ¼ ρwghþ ρigH ð1Þ

where ρw is the density of water; ρi is the density of ice; g is the acceler-
ation of gravity; h is the bed elevation; and H is the ice thickness. We
calculated the subglacial drainage routes every 500 years for the period
between 12 and 7 ka BP, which encompassed the largest retreat dis-
tance (hundreds of kilometres) during deglaciation and was over
the predominantly hard crystalline bedrock on the Canadian Shield
(see Dyke, 2004). The bed elevation data (h) were constructed at
5-km resolution from Gebco_08 digital elevation model (DEM), and
the palaeo-ice surfaces and palaeo-bed topographies (corrected for
isostasy) were derived from ice-sheet model output from one of
the higher probability runs (LT9927) from the ensemble-based
analyses of the LIS using the three-dimensional (3D) Glacial Sys-
tems Model (GSM) (Tarasov et al., 2012). The GSM includes a 3D
thermomechanically coupled shallow ice-sheet model, bed-thermal
model, visco-elastic bedrock response, and coupled surface drainage
and pro-glacial lake solver. The GSM is calibrated against a large set of
observational constraints, including geological and geomorphological

evidence and is able to reproduce ice stream locations and ice-margin
positions (Stokes and Tarasov, 2010; Tarasov et al., 2012). The LT9927
is from the subensemble of runs used by Livingstone et al. (2013a,b).
Their analysis showed that the modelled distribution of subglacial
lakes and major drainage routes is a robust result achieved irrespective
of the model run used from this subensemble (see Fig. 8 from
Livingstone et al., 2013a,b). Given this and the time required for
analysing each run, we base our analysis just on LT9927 for this study.
The 1° longitude by 0.5° latitude resolutionmodel outputwas regridded
at 5-km cell size. Subglacial drainage routes (i.e., the direction that
water flows) were constructed from the hydraulic potential surfaces,
using simple GIS routing tools as per Livingstone et al. (2013a,b).
Basal meltwater production (cm/y) generated from the GSM was used
to weight flow accumulation down subglacial drainage routes. Each
cell was given an accumulative basal meltwater value of all the cells
that flow into it, hereafter referred to as the ‘modelled subglacial flow
concentration’. Output cells with a high flow accumulation represent
a drainage route along which subglacial meltwater is concentrated.
To allow for basal meltwater production caused by likely subgrid topo-
graphic variation,we set aminimumbasalmeltwater output (0.1 cm/y)
in regions of the bed where the temperature was 0 to −2 °C below
pressuremelting point. Meltwater may also enter the subglacial system
from supraglacial sources, although these are not reproduced here be-
cause of the difficulty of modelling this process. Thus, we use basal
meltwater production simply to indicate where meltwater is likely
to concentrate rather than suggesting that all meltwater is necessarily
produced at the bed.

2.3. Comparison of eskers and modelled subglacial drainage routes

To our knowledge, a comparison between the pattern of eskers and
modelled subglacial drainage routes has not been previously under-
taken at the ice-sheet scale. Thus, in this analysis, we explore first-
order relationships between the location and orientation of eskers and
modelled drainage routes (Fig. 1). Approaches for these two compari-
sons are described below.

2.3.1. Spatial conformity of eskers and modelled subglacial flow
concentration

Output cells with a high subglacial flow concentration indicate re-
gionswhere large volumes ofmeltwater are routed, and these represent
potential meltwater conduit locations (Fig. 1A). These should corre-
spond to esker locations, as this is where Röthlisberger channels are
theorised to form (e.g., Röthlisberger, 1972; Shreve, 1972).

To investigate how the spatial pattern of eskers relates to the routing
of subglacialmeltwater beneath the LIS, we comparedmodelled subgla-
cial flow concentration with the esker pattern at 500-year time slices
from 12 to 7 ka BP (Fig. 1A). At each time slice we extracted flow con-
centration values of all cells that contain eskers and all cells covered by
ice in themodel domain.We also identified cells thatmatchwith the spa-
tial extent of palaeo-ice stream locations recently compiled in Margold
et al. (2015) and cells that match the terrestrial portion of the palaeo-
ice sheet bed (i.e., where the mapping was carried out) (Storrar et al.,
2013). The probability density function of modelled subglacial flow con-
centration was calculated for each of the variables extracted and results
displayed as a ratio between each probability density function and the
probability density function of all the cells covered by ice in themodel do-
main. Statistical significance was evaluated with a binomial test.

To further identify any spatialmatch between eskers andmajor sub-
glacial drainage routes we used a flow concentration of N20 cm/y to
identify potential meltwater conduit locations (Fig. 1A). A value of 1
was assigned to cells where the flow concentration exceeded 20 cm/y
and a value of 0 to those that did not (see also Livingstone et al.,
2013b). This was done for every time slice and the values (0 s and 1 s)
then summed together to produce a composite map of potential melt-
water conduits and their persistence over time.
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