
Assessment of debris flow hazards using a Bayesian Network

Wan-jie Liang a,b, Da-fang Zhuang a,b, Dong Jiang a,b,⁎, Jian-jun Pan a, Hong-yan Ren b

a College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
b State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences,
Beijing 100101, China

a b s t r a c ta r t i c l e i n f o

Article history:
Received 11 February 2011
Received in revised form 16 March 2012
Accepted 8 May 2012
Available online 15 May 2012

Keywords:
Debris flow hazard
Bayesian Network
Hazard assessment
Chinese mainland

Comprehensive assessment of debris flow hazard risk is challenging due to the complexity and uncertainties of
various related factors. A reasonable and reliable assessment should be based on sufficient data and realistic ap-
proaches. This study presents a novel approach for assessing debris flow hazard risk using BN (Bayesian Net-
work) and domain knowledge. Based on the records of debris flow hazards and geomorphological/
environmental data for the Chinese mainland, approaches based on BN, SVM (Support Vector Machine) and
ANN (Artificial Neural Network)were compared. BN provided the highest values of hazard detection probability,
precision, and AUC (area under the receiver operating characteristic curve). The BNmodel is useful for mapping
and assessing debris flow hazard risk on a national scale.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A debris flow is a common geological hazard. It often begins with a
landslide, and the potential energy of the generated sliding mass can
rapidly convert into kinetic energy. Debris flows can induce a series of
disasters that may pose a serious threat to lives, properties, and eco-
nomic development. Many countries suffer from serious debris flow
hazards. For example, large-scale debris flows occurred in Uganda on
March 1, 2010, resulting in disastrous casualties, with 94 deaths, 320
people missing, and three buried villages.

China is one of the debris-flow prone countries. Debris flows occur
in regions that correspond to 45% (106 km2) of the Chinese mainland
(Kang et al., 2004). For example, a debris flow hazard occurred in
Zhouqu in Gansu Province on August 8, 2010, resulting in 1467 deaths,
298 missing people and direct economic losses of 425,000 RMB. Similar
debris flowhazards also occurred in Chuxiong andGongshan of Yunnan
Province on the same day. Therefore, the assessment of regional debris
flow hazards is of great significance for the sustainable development of
China.

Various factors including topography, geology and climate influence
geological hazards, and the measurement of these factors may involve
large uncertainties (Kondratyev et al., 2006). Over the past few decades,
numerous hazard analyses have employed qualitative and quantitative
methods including artificial intelligence (AI). Qualitative approaches
were widely used in the 1970s to 1990s and were based on the

knowledge and opinions of experts (Carrara and Merenda, 1976;
Rupke et al., 1988; Carmassi et al., 1992; Hearn, 1995; Pachauri et al.,
1998). They have the following shortcomings: (i) evaluation tends to
be subjective and assessment results from different experts are not
comparable; (ii) updating assessment using new data is difficult; and
(iii) required field experiments and investigations are expensive and
time-consuming. In quantitative approaches, statistical analyses are
adopted to solve the problem of subjectivity (Baeza and Corominas,
2001; Carrara, 2008). For example, Ayalew and Yamagishi (2005)
adopted logistic regression for assessing landslide susceptibility;
Guzzetti et al. (2005) introduced a probability approach to assess land-
slide hazard risk on a basin scale; and Calvo and Savi (2009) conducted
Monte Carlo simulations for assessing debris flow risks. However,
nonlinear relationships between the variables used cannot be solved
by these approaches.

With the recent development of geographical information science,
data mining and AI have been adopted in assessing geological hazards
(Jiang and Eastman, 2000; Li et al., 2005). The techniques include ANN
(Artificial Neural Network; Chang and Chao, 2006a,b; Chang, 2007;
Chen et al., 2008; Gomez and Kavzoglu, 2005; Liu et al., 2005; Lu et al.,
2007), SVM (Support Vector Machine; Wan and Lei, 2009; Yao et al.,
2008), GA (genetic algorithms; Chang and Chien, 2007; Chang et al.,
2009), and decision tree models (Saito et al., 2009; Wan, 2009; Wan
and Lei, 2009). However, existing AI methods have three shortcomings:
(i) limited use of prior knowledge makes it difficult to interpret assess-
ment results; (ii) multiple sources of information cannot be integrated
into a consistent system for assessment; and (iii) they are not good at
dealing with the uncertainty of assessment.

BN (Bayesian Network) is an effective tool for knowledge repre-
sentation and reasoning under the influence of uncertainty (Pearl,
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1988; Reckhow, 1999). Because BN can present uncertainty interde-
pendencies among random variables that are used to describe real-
world domains, it has great potential for natural hazard assessment.
Compared with other assessment methods, BN has several merits:
(i) domain knowledge and multi-source information integrated into
a consistent system; (ii) many flexible learning algorithms for
searching optimal solutions; (iii) flexibility to include additional in-
formation; and (iv) decision support using nodes of functions and de-
cisions. In this study, a novel method for assessing debris flow hazard
risk based on BN and domain knowledge is proposed. Three debris
flow hazard maps of the Chinese mainland from BN, ANN and SVM
were produced and compared.

2. Data and methods

2.1. Assessment method based on Bayesian Network

A BNmodel can be expressed by (N, A, θ), where (N, A) is a directed
acyclic graph (DAG) and θ is a parameter for a node. Each node n∈N
represents a domain variable (often corresponding to an attribute in
the database), and each arc a∈A between nodes represents a probabi-
listic dependency between the associated nodes. Each node ni∈N is as-
sociated with a conditional probability distribution, collectively
represented byΞ∈{θi}, which quantifies how strongly a node depends
on its parent node (Pearl, 1988). BN has great potential for natural haz-
ard assessment. Comparedwith other AI methods such as ANN, amajor
advantage of BN is that they represent knowledge in a semantic way;
and individual components such as specific nodes, arcs, or even values
in the conditional probability tables have somemeaning and can be un-
derstood independently (Greiner et al., 2001). This allows us to con-
struct and interpret a network relatively easily.

A naïve BN model is a simple probabilistic classifier based on Bayes'
theorem with a strong independence assumption, where all the attri-
butes Ai are conditionally independent given the value of a class called
C. By independence, we mean probabilistic independence, that is, A is
always independent of B given C whenever Pr(A|B,C)=Pr(A|C) and
Pr(C)>0 where Pr is probability (Nir et al., 1997).

Our debris flow hazard assessment using a BN model has the fol-
lowing six steps:

1) Selecting relevant parameters and spatial units;
2) Constructing training sample datasets for the model;
3) Learning and constructing the structure of the model;
4) Learning and determining the parameters for each node of the

model;
5) Evaluating the performance and accuracy of the model; and
6) Using the model for assessment.

2.1.1. Learning structure of the BN model
To construct a BN model, the network that best matches a given

training set needs to be found. The learning algorithms may be divided
into two types: dependency analysis, and a scoring function with a
search algorithm. The algorithm of the latter can be subdivided into
two types: constraint-based and heuristic. The K2 algorithm (Gregory
and Edward, 1992) is typically constraint-based, and conducts search
according to the given node order with the limited maximum number
of parent nodes. The main drawback of the K2 algorithm is that only
the optimal structure within a limited search space can be found. The
greedy hill-climbing algorithm (Lim et al., 2006) is heuristic and be-
longs to the local search family. It tends to fall into local optimization;
to avoid this problem, the random mutation hill-climbing algorithm
has been put forward (David, 1994). There are many other heuristic
search algorithms such as the simulated annealing algorithm and GA
(Renner and Ekart, 2003). In our method, an initial BN structure is
obtained using the K2 search. The structure is then refined using do-
main knowledge to obtain a hazard assessment model.

2.1.2. Learning parameters of the BN-based model
Once a BN structure is constructed, parameters of CPT (conditional

probability table) for each node can be obtained with two general
approaches: using domain knowledge and using parameters learned
from sample datasets. If sufficient knowledge regarding themechanism
of debris flow hazards is obtained, the CPT parameters can be deter-
mined by an expert. If enough training data are given, the parameters
can also be derived from them. The two methods can be combined.
The parameter learning algorithms include maximum likelihood esti-
mation or Bayesian estimation. In this study, Bayesian estimation was
utilized.

2.2. Factors for debris flow hazard assessment

Debris flowoccurrence is affected by complex factors such as climate,
geology, topography, and hydrology. Seven environmental factors were
selected in this study to construct the assessment model of debris flow
hazards for the Chinese mainland: X1 — annual maximum cumulative
rainfall of three consecutive days; X2 — annual number of days with
daily rainfall above 25 mm; X3 — vegetation coverage index; X4 — fault
length; X5 — area percentage of slope land with >25° inclination
(APL25); X6 — maximum elevation difference of the basin; and X7 —

Gravelius index.
Rainfall is the main triggering factor of debris flow hazards, and de-

bris flow occurrence is related to both current and antecedent rainfalls.
Therefore, effective cumulative rainfall is useful for debris flow hazard
assessment (Hsieh and Chen, 1993) although its calculation is difficult.
It could be represented by the annual maximum cumulative rainfall of
three consecutive days, and the annual number of days with daily rain-
fall above 25 mm could also indicate the rainfall intensity and
concentration.

Slope is an essential and important factor of debris flow occurrence
(Johnson and Rodine, 1984;Wang, 1994). According to Liu et al. (2005)
and our field reconnaissance, most debris flows in China have initiated
on slopes steeper than 25°.

Some land use/cover types especially vegetation with strong and
large root systems increase slope stability (Dai and Lee, 2002). Franks
(1999) indicated that sparsely vegetated slopes are the most suscepti-
ble to failure. Nilaweera and Nutalaya (1999) stated that vegetation
provides hydrological and mechanical effects of slope stabilization. To
incorporate the effects of land use/cover, we used the following vegeta-
tion coverage index, I:

I ¼ a ∑5
i¼1Wi ∑n

j¼1SWjSj
� �� �

=S ð1Þ

where a is the normalization coefficient; Wi is the weight of the first
class of land use (Table 1); SWj is the weight of the subclass of land
use (Table 1); Sj is the area of the subclass in an assessment unit; and
S is the total area of the unit.

Fault zone development may provide weaker rocks and facilitate
slope failure and debris production. Therefore, we measured the total
length of faults in a basin.

The Gravelius index (Casali et al., 2008), Kg, can be another factor
influencing debris flows:

Kg ¼ P=2
ffiffiffiffiffiffiffiffi
πAb

p
¼ 0:28P=

ffiffiffiffiffiffi
Ab

p
ð2Þ

where P is the basin perimeter (m) and Ab is basin area (m2). Kg repre-
sents the ratio of the basin perimeter to the perimeter of a circle with
the same area. Circular basins tend to have larger peak flow rates.
Therefore, a basin with a Gravelius index close to one may often cause
debris flows. Concerning drainage basin form, the maximum elevation
difference of a basin was also chosen as a factor of debris flow hazard
because it reflects potential energy.
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