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a  b  s  t  r  a  c  t

This article  reviews  a spectral  forward  gravity  field  modelling  method  that  was initially  designed  for  topo-
graphic/isostatic  mass  reduction  of  gravity  data. The  method  transforms  3D  spherical  density  models  into
gravitational  potential  fields  using  a spherical  harmonic  representation.  The  binomial  series  approxima-
tion  in  the approach,  which  is  crucial  for its computational  efficiency,  is examined  and  an  error  analysis
is  performed.  It is shown  that, this  method  cannot  be used  for density  layers  in  crustal  and  upper  mantle
regions,  because  it results  in  large  errors  in  the  modelled  potential  field.  Here,  a  correction  is proposed  to
mitigate  this  erroneous  behaviour.  The  improved  method  is  benchmarked  with  a  tesseroid  gravity  field
modelling  method  and  is shown  to be  accurate  within ±4  mGal  for  a layer  representing  the  Moho  density
interface,  which  is  below  other  errors  in  gravity  field  studies.  After  the proposed  adjustment  the  method
can  be  used  for  the global  gravity  modelling  of  the  complete  Earth’s  density  structure.

© 2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Interpreting gravitational data in terms of internal mass density
distributions requires gravitational reduction that can be computed
by forward modelling techniques. The gravitational field of any 3D
object can be computed by integrating the gravitational effects of its
mass density distribution. One technique for evaluating this inte-
gral is based on spherical harmonic expansion of the Newtonian
kernel. This technique was applied to forward modelling of the
topographic potential and its gradients (Lachapelle, 1976; Rapp,
1982; Rummel et al., 1988; Pavlis and Rapp, 1990) and modified
for computing gravitational gradients generated by topography and
atmosphere at satellite altitudes (Novák and Grafarend, 2006). The
advantage of this technique is that it takes into account the curva-
ture of the Earth.

There are two approaches to solve the spherical harmonic-based
volume integral (Pavlis and Rapp, 1990): the rigorous formu-
lation and the binomial series expansion method. The rigorous
spectral method (RSM) introduced by Lachapelle (1976) is compu-
tational expensive (Pavlis and Rapp, 1990). The second approach,
by Rummel et al. (1988), uses a binomial series expansion to
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approximate the volume. We  call it the fast spectral method (FSM)
in this study, because it is computationally more efficient than the
rigorous spectral method. The number of computationally expen-
sive global spherical harmonic analyses (GSHA) (Sneeuw, 1994) is
drastically reduced by introducing the binomial series approxima-
tion. The FSM approach provides a means to use higher resolution
density models than the RSM.

The FSM forward modelling is used in several previous studies
(Rummel et al., 1988; Novák and Grafarend, 2006; Martinec, 1991;
Root et al., 2015). Despite its computational speed, the FSM has lim-
itations that should be known to users. The FSM forward modelling
is used to compute the potential field of a topographic/isostatic
mass layer in most studies, but for density layers in the lower
crust and upper mantle the FSM gives erroneous results as will
be shown in Section 4. This erroneous signal results in incorrect
mantle density heterogeneities, when the FSM is used in a grav-
ity inversion study. The improvement which is introduced here
extends the applicability of the FSM to the general case of forward
gravitational modelling of mass density distributions for an entire
planet.

Section 2 provides a review of the analytical representation
of the FSM. This is followed by a characterisation of the error
introduced by the binomial series approximation. In Section 4, a
mitigation strategy is introduced. Finally, a benchmark of the FSM
with tesseroid software is shown in Section 5.
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2. Review of the fast spectral forward modelling method

The analytical representation of the RSM and FSM starts simi-
larly (Pavlis and Rapp, 1990). In the following, we derive a formula
for the gravitational potential which is the conventional represen-
tation of a (conservative and irrotational) gravitational field. From
Newton’s law of universal gravitation and the superposition prin-
ciple, the gravitational potential V outside the body � at location,
P, can be computed (e.g. Rummel et al. (1988)):

V(P) = G

∫ ∫ ∫
�

�(Q )
�(P, Q )

d�(Q ). (1)

where G is the universal gravitational constant, � is the mass den-
sity distribution within the body � and �(P, Q) is the Euclidian
distance between the computation point P(r, ˝)  and the infinites-
imal volume element d�(Q) at location Q(r′, ˝′). Eq. (1) can be
rewritten by using (geocentric) spherical coordinates:

d� = r2drd˝. (2)

Here, r is the radial coordinate and d  ̋ = sin(�)d�d� is a surface
element at a unit sphere, where � and � stand for a pair of geocentric
angular coordinates and represents a geocentric direction. Eq. (1)
then becomes

V(r, ˝)  = G

∫
�

∫ rupper(˝′)

r′=rlower(˝′)
�(r′, ˝′)  L−1(r, ˝,  r′, ˝′) r′2 dr′ d˝′. (3)

The kernel function L−1(r, ˝,  r′, ˝′)  = 1
�(P,Q ) and the radial

coordinate is given by r′. The radial limits of this integral repre-
sent the upper and lower boundaries of the mass density layer. The
spherical harmonic representation for the inverse distance kernel
is Heiskanen and Moritz (1984, p. 33):

L−1(r, ˝,  r′, ˝′)  = 1
r

∞∑
n,m

(
r′
r

)n 1
2n + 1

Ynm(˝) Y∗
nm(˝′). (4)

In this equation the abbreviated notation
∑∞

n,m = ∑∞
n=0

∑n
m=−n

is used. Eq. (4) can be substituted in Eq. (3):

V(r, ˝)  = G

∞∑
n,m

(
1
r

)n+1 1
2n + 1

Ynm(˝)

∫
�

�(˝′) Y∗
nm(˝′)

d˝′
∫ rupper(˝′)

rlower(˝′)
r′n+2dr′. (5)

where it is assumed that the density distribution within the layer
does not depend on the radial position. Appendix A discusses an
approach for a radially varying density distribution in the mass
layer. For both cases, the radial integral in Eq. (5) must be evaluated.
The radial limits of this integral can be defined as follows:

rupper(˝′) = R + U(˝′) (6a)

rlower(˝′) = R + L(˝′). (6b)

U(˝′) and L(˝′) are upper and lower deviations from the cir-
cumscribing sphere (R) of the volumetric mass layer that is forward
modelled (see Fig. 1). This means that R ≥ R + U ≥ R + L, or in other
words 0 ≥ U ≥ L. Integrating the radial integral of Eq. (5) then yields

∫ rupper(˝′)

rlower(˝′)
r′n+2 dr′ = 1

n + 3

⎧⎨
⎩[R + U(˝′)]n+3︸  ︷︷  ︸

1st part

−[R + L(˝′)]n+3︸ ︷︷  ︸
2nd part

⎫⎬
⎭ .

(7)

From this point the RSM and the FSM differ. In the RSM a
global spherical harmonic analysis (GSHA) is performed on Eq. (7)

Fig. 1. Sketch of an arbitrary mass body. The distance (S) from the reference sphere
R  is defined positive upwards, resulting in 0 ≥ U ≥ L.

to determine the spherical harmonic coefficients of the potential
field (Lachapelle, 1976). However, this is computationally expen-
sive, because for every degree (n) an individual GSHA must be
performed. Especially, when the spherical harmonic degree is large
the time to compute the potential field is unpractical. The FSM was
developed to tackle this problem.

In the FSM, the first and second part in Eq. (7) can be evaluated
by a binomial series expansion (Abramowitz and Stegun, 1972).
Writing n + 3 = 	 and replacing U and L by their normalised values
Ũ = U

R and L̃ = L
R , we  get

(R + U)	 − (R + L)	 = R	

	∑
k=0

(
	

k

)[
Ũk − L̃k

]
. (8)

The series summation contains a finite number of terms, as 	 is
a positive integer (Abramowitz and Stegun, 1972). To reduce the
computational load, in practical applications (Rummel et al., 1988)
this series is truncated at a value ˛, where  ̨ < 	, resulting in

(R + U)	 − (R + L)	 = R	
∑̨
k=0

(
	

k

)[
Ũk − L̃k

]
+ 
˛. (9)

Here, 
˛ is the error made by the truncation of the binomial
series. An error analysis of this assumption follows in Section 3.1,
but for now we will choose  ̨ = 3 (Rummel et al., 1988). By neglect-
ing the higher-order terms, the radial integral from Eq. (7) becomes

∫ rupper(˝′)

rlower(˝′)
r′n+2dr′ ≈ Rn+3

[
U(˝′) − L(˝′)

R

+(n + 2)
U2(˝′) − L2(˝′)

2R2
+ (n + 2)(n + 1)

U3(˝′) − L3(˝′)
6R3

]
.

(10)

Following Novák and Grafarend (2006), we  will use a short-hand
notation, F(˝′), to denote everything between the square brackets
of Eq. (10):∫ rupper(˝′)

rlower(˝′)
r′n+2 dr′ ≈ Rn+3F(˝′). (11)

Substituting Eq. (11) in Eq. (5) gives:

V(r, ˝)  = GR2
∞∑

n,m

(
R

r

)n+1 1
2n + 1

Ynm(˝)

∫
�

�(˝′) F(˝′)

Y∗
nm(˝′) d˝′.  (12)
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