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This article reviews a spectral forward gravity field modelling method that was initially designed for topo-
graphic/isostatic mass reduction of gravity data. The method transforms 3D spherical density models into
gravitational potential fields using a spherical harmonic representation. The binomial series approxima-
tion in the approach, which is crucial for its computational efficiency, is examined and an error analysis
is performed. It is shown that, this method cannot be used for density layers in crustal and upper mantle
regions, because it results in large errors in the modelled potential field. Here, a correction is proposed to
mitigate this erroneous behaviour. The improved method is benchmarked with a tesseroid gravity field
modelling method and is shown to be accurate within 44 mGal for a layer representing the Moho density
interface, which is below other errors in gravity field studies. After the proposed adjustment the method

can be used for the global gravity modelling of the complete Earth’s density structure.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Interpreting gravitational data in terms of internal mass density
distributions requires gravitational reduction that can be computed
by forward modelling techniques. The gravitational field of any 3D
object can be computed by integrating the gravitational effects of its
mass density distribution. One technique for evaluating this inte-
gral is based on spherical harmonic expansion of the Newtonian
kernel. This technique was applied to forward modelling of the
topographic potential and its gradients (Lachapelle, 1976; Rapp,
1982; Rummel et al., 1988; Pavlis and Rapp, 1990) and modified
for computing gravitational gradients generated by topography and
atmosphere at satellite altitudes (Novak and Grafarend, 2006). The
advantage of this technique is that it takes into account the curva-
ture of the Earth.

There are two approaches to solve the spherical harmonic-based
volume integral (Pavlis and Rapp, 1990): the rigorous formu-
lation and the binomial series expansion method. The rigorous
spectral method (RSM) introduced by Lachapelle (1976) is compu-
tational expensive (Pavlis and Rapp, 1990). The second approach,
by Rummel et al. (1988), uses a binomial series expansion to
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approximate the volume. We call it the fast spectral method (FSM)
in this study, because it is computationally more efficient than the
rigorous spectral method. The number of computationally expen-
sive global spherical harmonic analyses (GSHA) (Sneeuw, 1994) is
drastically reduced by introducing the binomial series approxima-
tion. The FSM approach provides a means to use higher resolution
density models than the RSM.

The FSM forward modelling is used in several previous studies
(Rummel et al., 1988; Novak and Grafarend, 2006; Martinec, 1991;
Rootetal.,2015). Despite its computational speed, the FSM has lim-
itations that should be known to users. The FSM forward modelling
is used to compute the potential field of a topographic/isostatic
mass layer in most studies, but for density layers in the lower
crust and upper mantle the FSM gives erroneous results as will
be shown in Section 4. This erroneous signal results in incorrect
mantle density heterogeneities, when the FSM is used in a grav-
ity inversion study. The improvement which is introduced here
extends the applicability of the FSM to the general case of forward
gravitational modelling of mass density distributions for an entire
planet.

Section 2 provides a review of the analytical representation
of the FSM. This is followed by a characterisation of the error
introduced by the binomial series approximation. In Section 4, a
mitigation strategy is introduced. Finally, a benchmark of the FSM
with tesseroid software is shown in Section 5.
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2. Review of the fast spectral forward modelling method

The analytical representation of the RSM and FSM starts simi-
larly (Pavlis and Rapp, 1990). In the following, we derive a formula
for the gravitational potential which is the conventional represen-
tation of a (conservative and irrotational) gravitational field. From
Newton’s law of universal gravitation and the superposition prin-
ciple, the gravitational potential V outside the body ¥ at location,
P, can be computed (e.g. Rummel et al. (1988)):
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where G is the universal gravitational constant, p is the mass den-
sity distribution within the body X and £(P, Q) is the Euclidian
distance between the computation point P(r, §£2) and the infinites-
imal volume element dX(Q) at location Q(r, §2’). Eq. (1) can be
rewritten by using (geocentric) spherical coordinates:

d¥ = r?drd2. (2)

Here, r is the radial coordinate and d£2 =sin(6)dédA is a surface
elementataunitsphere, where ¢ and A stand for a pair of geocentric
angular coordinates and represents a geocentric direction. Eq. (1)
then becomes
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The kernel functlon LN, 2,1, ) = 4 I}Q and the radial
coordinate is given by r’. The radial limits of this integral repre-
sent the upper and lower boundaries of the mass density layer. The
spherical harmonic representation for the inverse distance kernel

is Heiskanen and Moritz (1984, p. 33):
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In this equation the abbreviated notation " =>"> /S~
is used. Eq. (4) can be substituted in Eq. (3):
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where it is assumed that the density distribution within the layer
does not depend on the radial position. Appendix A discusses an
approach for a radially varying density distribution in the mass
layer. For both cases, the radial integral in Eq. (5) must be evaluated.
The radial limits of this integral can be defined as follows:

Tupper(§27) = R + U(£2/) (6a)
Tower(§27) = R+ L(§21). (6b)

U(£2') and L(£2') are upper and lower deviations from the cir-
cumscribing sphere (R) of the volumetric mass layer that is forward
modelled (see Fig. 1). This means that R>R+U>R+L, or in other
words 0 > U > L. Integrating the radial integral of Eq. (5) then yields
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From this point the RSM and the FSM differ. In the RSM a
global spherical harmonic analysis (GSHA) is performed on Eq. (7)
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Fig. 1. Sketch of an arbitrary mass body. The distance (S) from the reference sphere
R is defined positive upwards, resulting in 0> U > L.

to determine the spherical harmonic coefficients of the potential
field (Lachapelle, 1976). However, this is computationally expen-
sive, because for every degree (n) an individual GSHA must be
performed. Especially, when the spherical harmonic degree is large
the time to compute the potential field is unpractical. The FSM was
developed to tackle this problem.

In the FSM, the first and second part in Eq. (7) can be evaluated
by a binomial series expansion (Abramowitz and Stegun, 1972).
Wr1t1ng n+3=v and replacing U and L by their normalised values
U= andL_R,weget
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The series summation contains a finite number of terms, as v is
a positive integer (Abramowitz and Stegun, 1972). To reduce the
computational load, in practical applications (Rummel et al., 1988)
this series is truncated at a value «, where « < v, resulting in
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Here, €, is the error made by the truncation of the binomial
series. An error analysis of this assumption follows in Section 3.1,
but for now we will choose o =3 (Rummel et al., 1988). By neglect-
ing the higher-order terms, the radial integral from Eq. (7) becomes
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Following Novak and Grafarend (2006), we will use a short-hand
notation, F(§2’), to denote everything between the square brackets
of Eq. (10):
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Substituting Eq. (11) in Eq. (5) gives:
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