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We explore the capability of singular spectrum analysis (SSA) to extract time-variable seasonal oscillations from
continual GPS observations and demonstrate the statistical assessment on the colored noise (in particular the
first-order autoregressive AR(1) noise) using Monte Carlo SSA (MCSSA) methodology. We provide example ap-
plications to ~15-year vertical coordinate time series for 36 globally distributed International GNSS Service (IGS)
sites. We find the SSA-filtered seasonal signals can easily pass the confidence interval and hypothesis tests of
MCSSA. However,maximum likelihood estimate (MLE) results show that 72% of sites have theirflicker noise am-
plitudes reduced after removing SSA-filtered annual signal, implying that the SSA-filtered seasonal signals may
contain an artificial signal driven by colored noise. Therefore, the AR(1) null hypothesis noisemodelmay bemis-
leading in surrogate data tests for GPS seasonal signals. Moreover, comparison between SSA-filtered GPS annual
signals and joint geophysicalmodel predictions (non-tidal atmospheric loading+non-tidal ocean loading+hy-
drological loading) confirms that seasonal signals are resulting from a combination of mass loading and system-
atic error.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Site-position time series generated from continuousGlobal Position-
ing System (CGPS) arrays reveal significant seasonal variationswith an-
nual and semi-annual periods (especially in the vertical component).
The study of seasonal signals in GPS coordinate time series has been
pursued for a number of important reasons. First, seasonal signals can
bias the site velocity if unaccounted for (Blewitt and Lavallée, 2002).
Second, seasonal signals in the frame sites can bias the frame realization
and further aliased into the site coordinates (Freymueller, 2009).
Finally, seasonal signals are vital for understanding the underlying
geophysical processes associated with the large-scale transport of ter-
restrial fluids, such as atmospheric pressure (Tregoning and van Dam,
2005; Tregoning and Watson, 2009; Van Dam et al., 1994) and hydrol-
ogy loading (Dill and Dobslaw, 2013; Dong et al., 1997, 2002; van Dam
et al., 2001). In this case, these seasonal effects must be taken into
account for reliable estimated seasonal signals, in both GPS coordinate
time series and environmental loading. However, conventional least-
squares fitting (LSF) method solves seasonal terms with constant
amplitude, while real seasonal signals usually display amplitude modu-
lation due to non-uniform variation of the seasonal excitation sources.
Additionally, the noise in GPS coordinate time series and environmental
variables are time-correlated. If unaccounted for, the uncertainties of
the harmonic terms are estimated to be too optimistic (Langbein,
2012;Mao et al., 1999; Zhang et al., 1997). Therefore, to obtain accurate
harmonic estimators and their uncertainties require a prior appropriate

background noise assumption. Mao et al. (1999) and Williams et al.
(2004) found that the stochastic properties of GPS coordinate time se-
ries can be best described as a combination of white plus flicker noise.
However, other noise (e.g., power-law noise, random walk noise, and
first-order Gauss–Markov noise) is also detected in GPS coordinate
time series (King and Williams, 2009; Langbein, 2008). Though the
noise content can be estimated using the maximum likelihood estima-
tion (MLE) method, unfortunately, current methods (e,g., CATS soft-
ware (Williams, 2008) have a significant computational burden. For
10 years of daily GPS solutions of a single station with missing data, a
stochastic model such as power-law noise plus white where the spec-
tral index is estimated takes over a day to process.

Extraction of time-variable seasonal signals in GPS coordinate
time series is challenging. The problem has been explored in some
details in several recent studies. Bennett (2008) developed a flexible
semi-parametric model to investigate quasi-periodic signals in CGPS
coordinate time series, while the model depends on three main as-
sumptions: smoothly deviation functions, constant phase, and
“best” regularization parameter, respectively. Davis et al. (2012)
proposed a Kalman filter to capture the stochastic seasonal behavior
of geodetic time series, while the random walk process assumed in
Kalman filtering should be estimated in advance, which leads to a
heavy computational burden. Chen et al. (2013) applied singular
spectrum analysis (SSA) to extract time-variable seasonal signals
from GPS coordinate time series. However, simply using “pair selec-
tion criteria” (Vautard et al., 1992) to identify oscillatory empirical
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orthogonal functions (EOFs) may be problematic, because the annual
signal can be contaminated by the draconitic spectrum with period
of 351.2 days (Ray et al., 2008). More recently, Klos et al. (2015)
used wavelet decomposition to determine seasonal GPS curves that
change in their amplitude. However, wavelet decomposition may
absorb colored noise. Therefore, it is necessary to further extend
our research to apply Monte Carlo SSA (MCSSA) to discriminate be-
tween the seasonal signals and colored noise exist in GPS coordinate
time series, and to investigate whether SSA-filtered GPS seasonal sig-
nals reflect geophysical signals.

The rest of the article is structured as follows. Section 2 briefly
outlines the methodology of SSA, MCSSA, and LSF, respectively.
Section 3 demonstrates the ability of MCSSA in detecting seasonal
signals from noised GPS coordinate time series, and then follows
the comparison between SSA and LSF in extracting seasonal signals.
Noise contents estimated from the stochastic model using MLE are
used to confirm whether MCSSA really works. Example applications
to ~15 years vertical coordinate time series for 36 globally distribut-
ed International GNSS Service (IGS) sites are presented. The poten-
tial consequence of neglecting seasonal signals on the estimation of
site velocity is explored. Displacements predicted from atmospheric
pressure loading (ATML), non-tidal ocean mass loading (NTOL), and
hydrology loading (HYDL) are used to investigate whether SSA-
filtered GPS seasonal signals reflect geophysical significance. Finally,
Section 4 presents concluding remarks.

2. Methodology

2.1. SSA and MCSSA

Vautard and Ghil (1989) originally introduce the idea of using
pairs of sinusoidal EOFs in quadrature to indicate a physical oscilla-
tion. Since then, SSA has received considerable attention in climate
data analysis. For a standardized time series X, where sample index
t varies from 1 to N, we obtain an N ×M trajectory matrix D by slid-
ing an M-point window, and then define an M × M lagged correla-
tion matrix:

CX ¼ ηDTD ð1Þ

where the superscript T indicates transposition of vectors and
matrices, η is a normalization constant.

Due to less variance and convenient associating frequencies with
EOFs, we adopt the VG algorithm (Ghil et al., 2002) to compute the
eigenelements of CX:

Ci j ¼
1

N− i− jj j
XN− i− jj j

t¼1

dtdtþ i− jj j ð2Þ

We diagonalize the lag-covariance matrix CX and rank the eigen-
values in decreasing order:

ΛX ¼ EXð ÞTCXEX ð3Þ

where ΛX is diagonal, the kth diagonal element being the kth largest
eigenvalue and the kth column of EX being the corresponding eigenvec-
tor or EOF.

Projecting the time series onto each EOF yields the corresponding
principal components (PCs) Ak:

Ak tð Þ ¼
XM
j¼1

X t þ j−1ð ÞEk jð Þ ð4Þ

The entire time series or parts of it that correspond to trends, period-
ic terms, or noise can be reconstructed by linear combining the recon-
structed components (RCs) Rk:

RK ¼

1
i

Xi

j¼1

Ak t þ j−1ð ÞEk jð Þ 1≤ i≤M−1

1
M

XM
j¼1

Ak t þ j−1ð ÞEk jð Þ M≤ i≤N−M þ 1

1
N−iþ 1

XM
j¼i−NþM

Ak t þ j−1ð ÞEk jð Þ N−M þ 2≤ i≤N

8>>>>>>>>>><
>>>>>>>>>>:

; ð5Þ

where k is the set of EOFs on which the reconstruction is based on.
The following question is how to select k when a data series is con-

taminated with colored noise, and this issue is not well solved in Chen
et al. (2013). For the purposes of developing the problem, we assume
the signal and noise are linearly independent, and define the expected
lag-covariance matrix of the data series as:

ξ CXð Þ ¼ ξ CSð Þ þ ξ CRð Þ ð6Þ

We find that signal-to-noise (S/N) separation using slope break in a
“scree diagram” of eigenvalues versus k does not workwell when a data
series turns out not to be white, because the high-ranked EOFs of CX can
no longer be expected to approximate to the EOFs of the lag-covariance
matrix of signal CS. Given this, conventional eigenvalue rank order is no
longer a reliable indicator of statistical or physical significance. Alterna-
tively, “Pair selection criteria” (Vautard et al., 1992) may be a solution
for indicatingpotential oscillatory EOFs. However, Allen (1992) notes si-
nusoidal EOF pairs may also be attributable to noise, and a linear plus a
first-order autoregressive (AR(1)) noise can easily pass the “pair selec-
tion criteria.” These problems that arise with red noise motivate Allen
and Smith (1996) to developMCSSA, amethod of discriminating signals
from arbitrary noise process via SSA, based on the idea of surrogate data
testing.

The first step in MCSSA is testing series against a pure AR(1) noise
null hypothesis. Before simulating red noise data (i.e., surrogate data),
noise parameters (e.g., square on the mean u2, lag-1 autocorrelation γ,
and noise covariance α, respectively) must be unbiasedly estimated in
advance. Following Allen and Smith (1996), we define the expected
lag-covariance matrix of this noise realization by

CN ¼ c0W ð7Þ

where Wij = γ|i − j| − μ2(γ) and μ2ðγÞ ¼ − 1
N þ 2

N2 ½N−γN

1−γ − γð1−γN−1Þ
ð1−γÞ2 �.

We estimate the explicitly γ, namely ~γ, by solving

tr1 Wð Þ
tr0 Wð Þ ¼

tr1 CXð Þ
tr0 CXð Þ ð8Þ

using Newton–Raphson iteration with a start from γ̂ ¼ tr1ðCXÞ=tr0ðCXÞ,
where trj is a generalized trace operator, which applied to aM×M sym-
metric matrix, is defined as:

tr j Cð Þ ¼ 1
M− j

XM− j

k¼1

Ck;kþ j ð9Þ

Then the unbiased lag-1 autocorrelation ~c0 is given by ~c0 ¼ tr0ðCXÞ=
tr0ðWÞ, and unbiased ~α is obtained from ~α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~c0ð1−γÞp
simultaneously.
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