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Computer aided geological modeling is always subject to uncertainty because it results from interpolation of
sample data. Sample data are subject to uncertainties coming from location error, stochastic nature of the
geological variable and imprecise knowledge. The lack of knowledge due to limited sampling data can be viewed
as the main source of uncertainty. Besides, in terms of computer modeling another source of uncertainty is the
shape complexity shown by geological units. Considering that just few drill holes are available the constructed
model is going to present large uncertainties. However, an uncertainmodel cannot be used for a precise interpre-
tation of geological setting. To overcome this problem, this paper proposes a novel approach for uncertainty
reduction and enhancement of the reliability of the geological model. This procedure is based on resampling
the computed model and post-processing using this new sample. Results of post-processing are much better
than the first interpolated geological model. Besides, this procedure can be repeated until the final result is
considered acceptable within the limited extent of the sample data.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

3D geological models built from sampling data essentially contain
uncertainties. Moreover, the uncertainty increases with decreasing
sample size. It is important to note that additional data not always
means further uncertainty reduction depending on location of the
new data. This paper concerns building 3D geological models from
geologic logging of drill holes that are irregularly spaced in the
horizontal and vertical directions. According to Welmann et al. (2010,
p. 142), sources of uncertainty associated with geological data can be
classified in three categories: (1) imprecision and measurement error;
(2) stochastic nature of the geological variable and (3) imprecise knowl-
edge. In the first category we have uncertainty coming from location
error. For example, drill hole deviations will cause errors on determina-
tion of three dimensional coordinates and consequently on thickness
estimation and geologic contact definition. The last two categories are
related to the lack of knowledge because insufficient sampling. In the
early stages of mineral exploration the lack of knowledge is the main
source of uncertainty because few data are available. Considering
modern drilling and surveying techniques, the location error is insignif-
icant. However, the geologist must provide the best geological model in
the light of available data. It means giving a result as certain as possible.
In this paper, 3D geological models are built from the interpolation of

types of a categorical variable such as facies, formations, rock types,
and degree of alteration. Interpolation of different types of a categorical
variable is possible after transforming them into indicator functions.
Thus, for each type its indicator function is interpolated. Because we
have a number of interpolated indicator functions corresponding to
the different types, themost likely type is given by the greatest indicator
value. The variance associated with the greatest indicator value is the
measure of uncertainty. The resulting interpolated geological model
will present uncertainties closer to geological boundaries (contacts
and faults). Evidently, uncertainties will be large when this model is
computed from few samples, and this uncertain model is unacceptable
even considering the lack of knowledge as given by the sample. A com-
puted 3D geological model is unacceptable when it presents artifacts
coming from interpolation of few data. In this paper, we are aimed to
improve the accuracy of geological model and propose to resample
the computed model by using this new sample to post-process only
uncertain zones. Moreover, the post-processed geological model can be
resampled and post-processed again. Theoretically, this process can be
implemented repeatedly. Usually, the resulting model after the second
resampling is more accurate than the first interpolated model. Besides,
post-processing improves the geological continuity of formations.

2. Measuring uncertainties in geological modeling

Wellmann et al. (2010, p. 143–145) proposed a method to incorpo-
rate uncertainty in geological models. This method is based on five-step
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procedure, in which the first concerns construction of the initial model
using all available data (contacts, faults and orientation measure-
ments); since input data are subject to uncertainties the proposed
method assigns probability distributions (normal distribution for
gradual contact; uniform distribution when direct contact is missing
and discrete distribution when the position of correct contact is
unknown); in the next step different input data sets are drawn from
assigned probability distributions; simulation of multiple geological
models based on new input data sets; and finally visualization and
post-processing of results. Because there are multiple realizations of
the geological model, uncertainties are viewed by displaying all realiza-
tions simultaneously (Wellmann et al., 2010, p. 145). Besides that, for
complex geological settings, Wellmann et al. (2010, p. 146) proposed
to use indicator function that is one if location x belongs to a given for-
mation F and zero otherwise.

I F xð Þ ¼ 1 forx ∈ F
0 forx ∉ F

�

According to these authors, because there are multiple realizations,
the probability of the formation Foccurring at location x can be computed
as the mean value of all indicator functions.

P F Gð Þ ¼
X
k ∈ n

I Fk
n

Wellmann et al. (2011) suggested a further improvement on the
former method (Wellmann et al., 2010, p. 748–750) that is the use of
the concept of information entropy after Shannon (1948). They use
the same five-step procedure (Wellmann et al., 2010, p. 143–144) in
which added the computation of the information entropy H associated
with the mean value of all indicator functions.

H ¼ −
XN
i¼1

pi logpi: ð1Þ

where N is total of possible outcomes and the logarithm is to base 2
(Wellmann et al., 2011, p. 748).

Silva and Deutsch (2012, p. 307-1) presented an approach for
modeling multiple rock types with a measure of uncertainty that gives
the confidence for a rock type prevailing at an unsampled location.
This method is based on distance function, which is negative when it
is within a domain and positive when outside (Silva and Deutsch,
2012, p. 307-1). According to this procedure, available samples are
coded as indicator functions:

Ik uαð Þ ¼ k if uα ∈ domain k
0 if uα ∉ domain k

:

�

Now, the indicator function is the input of a function F that returns
the distance (Silva and Deutsch, 2012, p. 307-2):

F Ik uαð Þð Þ ¼ dFk uαð Þ ¼ −d if Ik uαð Þ ¼ k
þd if Ik uαð Þ ¼ 0 :

�

Considering that we have K domains we will have K distance
functions on sample locations. Distance functions are interpolated K
times for an unsampled location (Silva and Deutsch, 2012, p. 307-2).
The most likely domain at an unsampled location uo is given by the
minimum distance function (Silva and Deutsch, 2012, p. 307-3):

I�k uoð Þ ¼ F−1 min dF�1 uo; l1ð Þ;dF�2 uo; l2ð Þ;…; dF�K uo; lKð Þ� �� �
:

As a measure of uncertainty, Silva and Deutsch (2012, p. 307-3)
proposed to define a U coefficient as the ratio between variance of all
estimated distances but the minimum (dFm(uo)) and the total variance:

U uoð Þ ¼ Var dF1 uoð Þ;…;dFm−1 uoð Þ; dFmþ1 uoð Þ;…;dFK uoð Þ� �
Var dF1 uoð Þ;…;dFm−1 uoð Þ; dFm uoð Þ; dFmþ1 uoð Þ;…;dFK uoð Þ� �

where dFm(uo) is the minimum interpolated distance. The range of U
coefficient is between zero and one, where zero means no uncertainty
andone large uncertainty (Silva andDeutsch, 2012, p. 307-3). According
to these authors, the U coefficient can be calculated at all interpolated
locations representing a measure of uncertainty.

Yamamoto et al. (2012) proposed a different approach to derive
uncertainty associated with the geological model. Actually, the geologi-
calmodel results from the interpolation of types of a categorical variable
composed of K types. Thus, available data are transformed into K indica-
tor functions (Yamamoto et al., 2012, p. 147) that are used to interpolate
unsampled locations. The indicator function for the kth type is:

I xi; kð Þ ¼ 1 if typekispresent at location xi
0 if typekisnot present at location xi

:

�
ð2Þ

As the most suitable interpolation method, Yamamoto et al. (2012,
p. 148) proposed to use multiquadric equations (Hardy, 1971, p. 1907)
instead of indicator kriging. Although indicator kriging is the most
common approach for interpolation of indicator functions, this method
requires K indicator semivariograms. However, this is very difficult to
obtain themwhenwe have types presenting few data points and conse-
quently few pairs for semivariogram computation (Yamamoto et al.,
2012, p. 147).

The indicator function for the kth type can be interpolated at an
unsampled location xo based on n neighboring indicator values as
(Yamamoto et al., 2012, p. 148):

I� xo; kð Þ ¼ ∑
n

i¼1
wiI xi; kð Þ: ð3Þ

This equationwasproved to be equivalent to the originalmultiquadric
equations of Hardy (1971, p. 1907) by Yamamoto and Landim (2013,
p. 110–111).

The weights {wi, i = 1, …, n} are the solution of a system of linear
equations (Yamamoto et al., 2012, p. 148):

∑
n

j¼1
wjφ xj−xi

	 

þ μ ¼ φ xo−xið Þ for i ¼ 1;n

∑
n

j¼1
wj ¼ 1

:

8>>><
>>>:

ð4Þ

For interpolation of indicator functions themultiquadric kernel gives
good results. The multiquadric kernel is:

φ xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj j2 þ C

q
ð5Þ

where |x| is the norm of a vector in Rn and C is a positive constant. This
constant is known as shape parameter and the accuracy of multiquadric
interpolation depends on this parameter (Bayona et al., 2011, p. 7384–
7385).

The variance associated with the kth interpolated type can be
computed as (Yamamoto et al., 2012, p. 149):

S2o xo; kð Þ ¼
Xn
i¼1

wi I xi; kð Þ−I� xo; kð Þ
h i2

: ð6Þ
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