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The utility of analog laboratory models for tectonic processes relies on their dynamical similarity to their
natural prototypes. Dynamical similarity is often thought to require that the density distribution in the
model be a constant (position-independent) multiple of that in the prototype, a principle due to Hubbert
(1937). To clarify the status of this rule, we nondimensionalize the equations and boundary/initial conditions
governing simple models of three paradigmatic processes: gravity tectonics, compressional tectonics, and
free subduction. The results show that density proportionality, while compatible with dynamical similarity,
is not always required by it in systems with negligible inertia, a category that includes most geological and
tectonic processes. The density proportionality rule is therefore unnecessarily restrictive in many cases,
implying that the range of analog materials that can be used to construct properly scaled models is wider
than commonly recognized.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Analog laboratory models are a versatile and powerful tool for un-
derstanding the origin of complex geological and tectonic structures.
Their use has a long history, beginning with Sir James Hall's (1815)
experiments on folding under compression. Since Hall's time many
hundreds of analog modeling studies of diverse tectonic phenomena
have appeared in the literature. Examples from recent decades include
investigations of folding and boudinage (Abbassi and Mancktelow,
1992; Biot et al., 1961; Cobbold, 1975; Hudleston, 1973; Mengong
and Zulauf, 2006; Neurath and Smith, 1982; Ramberg, 1959, 1962;
Treagus, 1972), diapirs and salt domes (Brun and Fort, 2004; Del
Ventisette et al., 2005; Ramberg, 1967; Talbot et al., 1991;
Weijermars et al., 1993), orogenic wedges (Cowan and Silling, 1978;
Davis et al., 1983; Graveleau et al., 2012; Hubbert, 1951; Liu and
Dixon, 1991; Lohrmann et al., 2003; Mulugeta, 1988), large-scale
deformation of continental lithosphere (Allemand and Brun, 1991;
Brun and Beslier, 1996; Davy and Cobbold, 1988, 1991; Tapponnier et
al., 1982; Tron and Brun, 1991; Vendeville et al., 1987), shear zones
(Jessell and Lister, 1991; Schrank et al., 2008), extensional fault systems
(McClay and Scott, 1991), gravitational instabilities of mantle
lithosphere (Pysklywec and Cruden, 2004), deformation-induced melt
segregation (Barraud et al., 2001), and subduction (Faccenna et al.,
1999; Funiciello et al., 2003; Jacoby, 1976; Kincaid and Olson, 1987;
Schellart, 2008; Shemenda, 1994). Detailed reviews of the current

state of the art in experimental tectonics include Buiter and Schreurs
(2006) and Graveleau et al. (2012), and insightful discussions of the
history of the field are given by Koyi (1997) and Ranalli (2001).

An analog model is only useful if its behavior is ‘dynamically
similar’ to that of the natural prototype, so that experimental results
can be extrapolated to geological length and time scales that are very
different from those in the laboratory. However, the question of
precisely what features of a model are required to ensure dynamical
similarity is a subtle one that has exercised scientists for centuries. It
has been recognized since antiquity that a model and its prototype
must be geometrically similar, the classic example being the ‘armillary
sphere’ model of the celestial sphere. In mechanics, however, geomet-
rical similarity, while necessary, is not a sufficient condition for dynam-
ical similarity. This seems first to have been recognized in the 1630s by
Galileo, who noted that a large ship in drydock often collapses under its
own weight whereas a smaller ship with exactly the same shape
remains intact (Galileo, 1974). Galileo's insight has been further devel-
oped and formalized by many distinguished scientists (Barenblatt,
1996; Birkhoff, 1960; Bridgman, 1931; Buckingham, 1914; Vaschy,
1892). The essential result of this work can be simply stated as follows:
two different instantiations of a mechanical system (e.g., a natural
prototype and a scale model of it) are dynamically similar if they
have the same values of all the dimensionless numbers (‘groups’)
that are required to characterize their geometry, kinematics, and
dynamics. Groups in the geometrical category include such things as
aspect ratios (length/width), layer-depth ratios, and angles. Kinemati-
cal groups involve time in addition: examples are the ratios of two
different time or velocity scales that are intrinsic to the system. Finally,
dynamical groups contain physical parameters with units of mass. Ex-
amples are ratios of material properties such as densities or viscosities,
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and ratios of two different forces or two different rates of energy
production in the system. A classic example for a flowing fluid is the
Reynolds number Re = ρUL/η, where U is the characteristic velocity,
L is a characteristic length, ρ is the density, and η is the (dynamic) vis-
cosity. The Reynolds number can be interpreted as the characteristic
ratio of inertia (~ρU2/L per unit volume) to viscous forces (~ηU/L2),
or equivalently as the characteristic ratio of the rate of change of kinetic
energy (~ρU3/L) to the rate of viscous dissipation (~ηU2/L2). Another
example is the Rayleigh number Ra = L3ρgαΔT/ηκ that governs ther-
mal convection in a layer thickness L, where g is the gravitational accel-
eration, α is the coefficient of thermal expansion, ΔT is the temperature
difference across the layer, and κ is the thermal diffusivity. It can be
interpreted as the characteristic ratio of the rate of change of gravita-
tional potential energy (~ρgαUΔT) to the rate of viscous dissipation
(~ηU2/L2), where the characteristic velocity scale is U ~ κ/L.

In the geological context, a particularly influential discussion of
dynamical similarity was given by Hubbert (1937). According to
Hubbert, similarity requires that all lengths, times and masses in the
model are constant multiples of those in the prototype. Hubbert
calls these multiplicative factors the ‘model ratios’ of length, time,
and mass. The crucial point here is that these ratios are properties
of the model/prototype pair as a whole, and are independent of
position. Moreover, the constancy of these model ratios implies the
existence of additional constant model ratios for derived quantities
such as density, velocity, and force.

One of the cornerstones of Hubbert's (1937) approach is the princi-
ple that a scale model must have a ‘mass distribution similar to that of
the original’ (p. 1468). Because this is equivalent to the requirement
that the ratio of the densities at corresponding points in the model
and the prototype be independent of position, we shall henceforth call
it the ‘density proportionality rule’. A corollary for the particular case
of a system of layers with densities ρ1,ρ2,…,ρN is that each of the ratios
ρ1/ρ2,ρ2/ρ3,…,ρN − 1/ρN must be the same in both the model and the
prototype. Hubbert's density proportionality rule has been followed
by many subsequent authors. For example, Ramberg (1981, p. 4) states
that dynamical similarity of a model to its prototype requires ‘the
condition of constant model ratio of mass per corresponding volume
throughout the two structures’. In the same vein, Weijermars and
Schmeling (1986, p. 328) state that ‘Dynamic similarity of a model
and a prototype… is only possible if… density ratios across subregions
are similar’.

Here we show that density proportionality is in fact not a general
requirement for dynamical similarity in systems involving slow
(inertia-free) viscous flow, the limit most relevant for understanding
geological structures. While density proportionality never violates
dynamical similarity, it is not necessarily implied by the true dynam-
ical similarity condition obtained from an analysis of the governing
equations. This means that an insistence on density proportionality
is unnecessarily restrictive in many cases, and that the range of ana-
log materials that can be used to construct properly scaled models
is wider than commonly supposed. We now illustrate these points
by means of three examples.

2. Gravity tectonics

Many complex geological structures result from mechanical insta-
bilities of superposed horizontal rock layers with different densities
and mechanical properties. If one of the layers is overlain by another
with higher density, gravitational (Rayleigh–Taylor) instability of the
interface between them will occur, giving rise to structures such as
diapirs and salt domes (Fig. 1a). The conditions for dynamical similar-
ity in such systems can be determined by studying the simple model
shown in Fig. 2a. Two layers with densities ρi, viscosities ηi, and initial
thicknesses hi (i = 1, 2) overlie an infinite halfspace with density ρ3
and viscosity η3. The upper surface is in contact with air or water of

density ρ0. This model configuration corresponds to model I-3 of
Ramberg (1981, p. 58).

Define surface i as the lower surface of layer i, and let ζi(x,y,t) be the
perturbed depth of that surface relative to its mean value, where (x,y)
are horizontal Cartesian coordinates and t is time. Let zi be the depth
to surface i; thus z0 = ζ0, z1 = h1 + ζ1, and z2 = h1 + h2 + ζ2. Let
n(x,y,t) be the unit vector normal to a surface, and let t(x,y,t) be any
unit vector tangent to it. The surface indices on n and t are suppressed
to simplify the notation.

Now define viscosity ratios γij = ηi/ηj, the layer-depth ratio h21 =
h2/h1, and the density contrasts Δρij = ρi − ρj. For definiteness, we
suppose Δρ12 > 0, so that surface 1 is gravitationally unstable. The
density contrast Δρ01 b 0, and Δρ23 can have either sign.

In the absence of inertia, the equations governing the conservation
of mass and momentum in layer i are

∇⋅u ið Þ ¼ 0; ð1aÞ

∇Pi ¼ ηi∇
2u ið Þ

; ð1bÞ

where u(i) is the velocity and Pi is the modified pressure, related to
the total pressure pi by Pi = pi − ρigz. The modified pressure Pi is
not the same as the nonhydrostatic pressure, which is obtained by
subtracting from pi the pressure due to the weight of all the material
above the point in question. The three components of u(i) in the x-, y-
and z-directions are (u1(i),u2(i),u3(i)).

We now write down the required boundary and matching condi-
tions on the different surfaces. The upper surface z = z0 is stress-free

a)

b)

c)
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Fig. 1. Examples of experimental tectonics. (a) Diapirs due to gravitational (Rayleigh–
Taylor) instability of two layers of silicone putty in a centrifuge (Ramberg, 1981).
(b) Compressional deformation of a model continental lithosphere comprising sand,
silicone putty and honey (photo P. Cobbold). (c) Free subduction of a sheet of silicone
putty in a tank of glucose syrup (photo A. Davaille).
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