Marine and Petroleum Geology 77 (2016) 235-246

Contents lists available at ScienceDirect

Marine and Petroleum Geology

journal homepage: www.elsevier.com/locate/marpetgeo

Research paper

Hydrate bearing clayey sediments: Formation and gas production concepts

Jaewon Jang ^{a, *}, J. Carlos Santamarina ^b

^a School of Sustainable Engineering and the Built Environment, Arizona State University, USA
^b Earth Science and Engineering, King Abdullah University of Science and Technology, Saudi Arabia

ARTICLE INFO

Article history: Received 30 November 2015 Received in revised form 29 April 2016 Accepted 16 June 2016 Available online 20 June 2016

Keywords: Gas hydrate Hydrate lenses Clayey sediments Frozen ground

ABSTRACT

Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach $\approx 2\%$ by concentrating the excess dissolved gas in the pore water and $\approx 20\%$ from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO_2 —CH₄ replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Fine-grained sediments host more than 90% of the accumulated global gas hydrate [Boswell 2009; Boswell and Collett 2011]. Well known accumulations of hydrate-bearing clayey sediments include those in the Gulf of Mexico, Krishna-Godavari basin, Blake Ridge, Cascadia Margin, Ulleung Basin, and Hydrate Ridge [Dai et al., 2011]. Hydrates in all these cases are found as segregated masses forming features such as lenses and nodules.

Hydro-thermo-chemo-mechanically coupled processes that occur during hydrate formation and dissociation affect the spatial distribution of hydrate in sediments and also control gas production during depressurization, heating and CO₂–CH₄ replacement.

Hydrate formation and dissociation in clayey sediments is strongly affected by pore size. The sediment porosity n decreases with sediment depth due to self compaction. In terms of void ratio

* Corresponding author.

e = n/(1-n), the sedimentation compression curve can be expressed as a function of the overburden effective stress σ ` [Burland 1990; Skempton 1969; Terzaghi and Peck 1948]:

$$e = e_{100} - C_C log\left(\frac{\sigma'}{100kPa}\right) \tag{1}$$

where e_{100} is the void ratio at σ [`] = 100 kPa and C_C is the sediment compressibility. The two constitutive parameters e_{100} and C_C increase with the sediment specific surface S_S [m²/g]. However, the change in vertical effective stress $d\sigma$ [`] between depths z and z + dz depends on the sediments saturated unit weight $\gamma_s = \gamma_w (G_s + e)/(1 + e)$

$$d\hat{\sigma} = (\gamma_s - \gamma_w)dz = \gamma_w \frac{(G_s - 1)}{(1 + e)}dz$$
(2)

where γ_w is the unit weight of water and G_s is the specific gravity of minerals that make the grains. Equations 1&2 are combined and integrated with depth to compute the depth varying overburden effective stress and void ratio (hence, porosity).

E-mail addresses: jjang19@asu.edu (J. Jang), Carlos.santamarina@kaust.edu.sa (J.C. Santamarina).

Notation		k_{H}^{o}	Hen
		m_h	mol
α	metabolizable carbon content	L	lens
α_{σ}	ratio of $\rho_{\sigma}c_{\sigma}$ to $\rho_{w}c_{w}$, $\alpha_{\sigma} = \rho_{\sigma}c_{\sigma}/\rho_{w}c_{w}$	L _H	tran
α_h	ratio of $\rho_h c_h$ to $\rho_w c_{wh} \alpha_h = \rho_h c_h / \rho_w c_w$	L	tran
α_m	ratio of $\rho_m c_m$ to $\rho_m c_{\mu\nu} \alpha_m = \rho_m c_m / \rho_{\mu\nu} c_{\mu\nu}$	Йс	mas
β	ratio of carbon molecular mass to methane molecular	Мсни	met
1-	mass	M _E	mas
вь	ratio of $\rho_b L_b$ to $\rho_w c_w, \beta_b = \rho_b L_b / \rho_w c_w$	Mu	hvd
Bi	ratio of $p_{H,2H}$ to $p_{W,0W}$ $p_{H} = p_{H,2H} p_{W,0W}$	MM	min
δ	thickness of hydrate lens	MDT	σας
n n	fluid volume expansion after hydrate dissociation	···· <i>r</i> ,1	tem
θ	contact angle	Mт	mas
ĸ	volume fraction of segregated hydrate		nart
λ	mole of methane per unit volume of hydrate	n	por
Ocur c	methane gas density	n	initi
PCH4-G	gaseous carbon dioxide density	n_c	fina
PC02-G	liquid carbon dioxide density	ng	mol
PC02-L 0	gas density	псн4-н Р	nreg
Pg OL	hydrate density	Pc	cani
рп 0	mineral density	Г (Р.,	nreg
рт 0	water density	Pr	fina
PW 0	water mass in unit volume of hydrate	Po	initi
Pw_nya σ`	effective stress	Pu,	wat
0	fraction of fines in sediment	R	unix
Ψ ν	hydration number (e.g. $(H_1, \gamma H_2)$ or $(O_2, \gamma H_2)$)	S.,	hvd
	compressibility factor	S _H	sner
00 ∕/	interfacial tension between hydrate and water	55 S	wat
γ_{a}	sediment unit weight	$T_{P,III}$	hvd
75 V	water unit weight	* DUIK	wat
Ca	specific heat of gas	Т	tem
Сь Сь	specific heat of hydrate	T _a	initi
Cm	specific heat of mineral		fina
с _т	specific heat of water	T_T	tem
C_{Λ}	solubility of methane in water after hydrate formation	ΔT_{dam}	hvd
C _R	solubility of methane in water before hydrate	- - uep	den
Сb	formation	ΔT_{LRAZ}	tem
Cc	sediment compressibility	1100	to d
Cu	methane concentration per kg of hydrate	ΔΤπ	tem
dnora	pore diameter	100	to n
e	void ratio	VCHA-C	volu
ec	void ratio of coarse particles	Vснл_н	volu
ef	void ratio of fine particles	Vco2-H	volu
e ₁₀₀	void ratio at σ = 100 kPa	V _{C02-1}	volu
Enis	energy needed to dissociate hydrate	VG	gas
EHBS	sensible energy available in sediment before hydrate	V_H	hyd
1103	dissociation	V_T	tota
FRwn	fraction of ice formed during hydrate dissociation	V_V	volu
Gs	specific gravity of minerals	Vw	wat
ΔH	enthalpy	z	dep
			P

k_{μ}^{0}	Henry's constant
т _п	molecular weight of gas hydrate
L.	lens-to-lens spacing
Lu	transformation heat of hydrate
L	transformation heat of ice
-i Mc	mass of metabolizable carbon
Мсци	methane mass
MF	mass of fine particles
Йн	hydrate mass
M _M	mineral mass
M _{PT}	gas concentration in water under pressure P and
-,-	temperature T condition
M_T	mass of sediment composed of coarse and fine
	particles
п	porosity
n_0	initial porosity of sediment before hydrate formation
n _f	final porosity of sediment after hydrate segregation
n _{CH4-H}	mole of methane in CH ₄ hydrate
Р	pressure
P_C	capillary pressure
P_H	pressure inside hydrate
P_F	final pressure after hydrate dissociation
P_0	initial pressure before hydrate dissociation
P_W	water pressure
R	universal gas constant
S _H	hydrate saturation
S_s	specific surface
Sw	water saturation
T_{Bulk}	hydrate formation/dissociation temperature in bulk
T	water
l T	temperature
I ₀ T	Initial temperature before hydrate dissociation
I _F T	inial temperature after hydrate dissociation
I_T	bydrate formation/dissociation temperature
∐dep	depression in small pores
AT	temperature change of water by the energy equivalent
⊿ I HW	to dissociate the same mass of hydrate
ΔΤημ	temperature change of water by the energy equivalent
	to melt the same mass of ice
VCHA C	volume of CH ₄ gas
V сн4-G V сцл ц	volume of CH ₄ bydrate
V _{C02-} н	volume of CO_2 hydrate
V _{C02-1}	volume of liquid CO ₂
V_G	gas volume
V_H	hydrate volume
V _T	total sediment volume
V_V	volume of voids
V_W	water volume
Ζ	depth

The mean pore size d_{pore} can be estimated from the void ratio e, specific surface S_s [m²/g] and the mineral mass density ρ_m :

$$d_{pore} = \frac{4e}{S_s \rho_m} \tag{3}$$

For reference, the mean pore size for kaolinite 1 m below the seafloor, z = 1 mbsf, is $d_{pore} \approx 200$ nm ($e_{100} = 1.04$, $C_c = 0.35$, $S_s = 10$ m²/g), while the mean pore size for bentonite at z = 1000 mbsf is $d_{pore} \approx 5$ nm ($e_{100} = 3.2$, $C_c = 1.2$, $S_s = 300$ m²/g).

Small pore size in clayey sediments affects gas solubility, the phase boundary, hydrate morphology and the properties of the hydrate bearing sediments.

The purpose of this study is to review the fundamental concepts relevant to hydrate formation in clayey sediments and to explore potential phenomena pertinent to gas production. We analyze coupled pore-scale phenomena and present simple yet robust asymptotic expressions to obtain order-of-magnitude estimates that can aid in the understanding of hydrate bearing clayey sediments and guide the design of gas production strategies. The Download English Version:

https://daneshyari.com/en/article/6434544

Download Persian Version:

https://daneshyari.com/article/6434544

Daneshyari.com