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Based on a 3D seismic cube and regional 2D long-offset seismic reflection profiles, we propose a
reconsideration of the architecture of the Mid-Norwegian outer Vering margin. A system comprising
large-magnitude detachment faults and steeper fault arrays was mapped together with key sedimentary
markers to provide constraints on the structural history of the outer Ran-Gjallar ridges system. Addi-
tionally, a detailed mapping of the so-called ‘T-reflection’ permitted a revision of the nature, origin and

tectono-magmatic significance of this debated major reflector.
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definition of breakup.

Based on our results, we develop a more general discussion on the final evolutionary stages of rifted
margins, including the construction of the outer domain, the birth of an oceanic spreading centre and the

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Margin domains

The terminology and methodology used in this contribution is
based on Peron-Pinvidic et al. (2007, 2016, 2015), Sutra et al. (2013)
and Tugend et al. (2015) (Fig. 1). In summary, we study the archi-
tecture of rifted margins via the definition of distinct structural
domains: the proximal, necking, distal, outer and (embryonic)
oceanic domains. Each margin domain is associated with specific
deformation processes (stretching, thinning, hyperextension, exhu-
mation, magmatic, oceanization) that can overlap, overprint and
interact in time and space. At the margin scale, the phases of
deformation migrate progressively oceanwards and each is char-
acterized by a specific tectonic, stratigraphic, isostatic, thermal and
magmatic evolution. The dip arrangement of structurally and
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stratigraphically distinct domains is directly related to the different
tectono-magmatic processes that successively affect the rift. Lith-
ospheric extension causes major changes in the lithospheric
strength profile in the domain of the tectonically and magmatically
active system, which, in turn, leads to changes in the dominant
deformation mechanism accommodating the extension. This
contribution focuses on the distal and outer domains of the Mid-
Norwegian Vgring margin (Fig. 2).

1.2. The distal domain

The distal domain occurs between the crustal neck and the more
magmatic outer domain (Fig. 1). Conceptually, this is the domain
where deformation is coupled on the crustal scale, where high-beta
extensional processes lead to the removal of ductile layers within
the continental crust, allowing faults to cut from the top crust into
the mantle and sea water to feed serpentinization processes -
where and when pressure and temperature conditions are
adequate (Escartin et al., 2001; Mevel, 2003; Skelton et al., 2005).
Outboard of the crustal neck, basement geometries consist of series
of tilted blocks flanked by upward concave detachment faults, with
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Fig. 1. Schematic cartoon illustrating the terminology used in this contribution. From Peron-Pinvidic et al. (2015). The cartoon summarizes the major structural and stratigraphic characteristics of upper-plate and lower-plate settings.
The definitions are (notably) from Peron-Pinvidic et al. (2013), Sutra et al. (2013), Tugend et al. (2015), Manatschal et al. (2014).
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