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In this research, we conduct a case study of mapping polymetallic prospectivity using an extreme learning ma-
chine (ELM) regression. A Quad-Core CPU 1.8 GHz laptop computer served as hardware platform. Almeida's
Python program was used to construct the ELM regression model to map polymetallic prospectivity of the
Lalingzaohuo district in Qinghai Province in China. Based on geologic, metallogenic, and statistical analyses of
the study area, one target and eight predictor map patterns and two training sets were then used to train the
ELM regression and logistic regression models. ELM regression modeling using the two training sets spends
61.4 s and 65.9 s; whereas the logistic regression modeling using the two training sets spends 1704.0 s and
1628.0 s. The four trained regression models were used to map polymetallic prospectivity. Based on the
polymetallic prospectivity predicted by each model, the receiver operating characteristic (ROC) curve was plot-
ted and the area under the curve (AUC) was estimated. The ROC curves show that the two ELM-regression-based
models somewhat dominate the two logistic-regression-basedmodels over the ROC performance space; and the
AUC values indicate that the overall performances of the two ELM-regression-basedmodels are somewhat better
than those of the two logistic-regression-based models. Hence, the ELM-regression-based models slightly out-
perform the logistic-regression-based models in mapping polymetallic prospectivity. Polymetallic targets were
optimally delineated by using the Youden index to maximize spatial association between the delineated
polymetallic targets and the discovered polymetallic deposits. The polymetallic targets predicted by the two
ELM-regression-based models occupy lower percentage of the study area (2.66–2.68%) compared to those pre-
dicted by the two logistic-regression-based models (4.96%) but contain the same percentage of the discovered
polymetallic deposits (82%). Therefore, the ELM regression is a useful fast-learning data-drivenmodel that slight-
ly outperforms the widely used logistic regression model in mapping mineral prospectivity. The case study re-
veals that the magmatic complexes, which intruded into the Baishahe Formation of the Paleoproterozoic
Jinshuikou Group or the Carboniferous Dagangou and Shiguaizi Formations, andwhichwere controlled by north-
west-western/east-western trending deep faults, are critical for polymetallic mineralization and need to be paid
much attention to in future mineral exploration in the study area.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Mapping of mineral prospectivity is a key procedure in mineral ex-
ploration. Statistical methods play an important role in this procedure.
There is a variety of statistical methods for mineral prospectivity map-
ping that can be categorized into data-driven, knowledge-driven, and
hybrids of them. Data-driven methods are the most popular mineral
prospectivity mapping techniques, which are often theoretically based
on regression/classification algorithms that come from machine learn-
ing field, for example, feed-forward neural networks (Brown et al.,
2000, 2003a,b; Harris and Pan, 1999; Harris et al., 2003; Oh and Lee,

2010; Skabar, 2003), multilayer perceptrons (Chen, 2015; Skabar,
2005, 2007), Bayesian networks (Porwal et al., 2006), radial basis func-
tional link net (Behnia, 2007; Leite et al., 2009a; Nykänen, 2008; Porwal
et al., 2003), probabilistic neural networks (Leite et al., 2009b), support
vector machines (Abedi et al., 2012; Geranian et al., 2016; Zuo and
Carranza, 2011), and random forests (Carranza and Laborte, 2015a,b,
2016; McKay and Harris, 2016; Rodriguez-Galiano et al., 2014), to
name a few.

In mineral prospectivity mapping, the above-mentioned machine
learning algorithms face the difficulty of determining initialization pa-
rameters, such as learning rate, learning epochs, and stopping criteria;
and except for random forests, these methods learn generally slow
and easily converge to local minima or overfit. A random forest is a clas-
sifier/regressor consisting of a collection of tree-structured classifiers/
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regressors that vote for the most popular class/regression in random
forests. In accordance with the Law of Large Numbers, the random
forests always converge to an expected classifier/regressor after a large
number of tree-structured classifiers/regressors is generated. Thus, ran-
dom forests do not overfit. For detailed discussion, see Breiman (2001).

Extreme learning machine (ELM) (Huang and Chen, 2007, 2008;
Huang et al., 2004, 2006a,b, 2010, 2012) is a novel training algorithm
for single-hidden-layer feedforward networks (SLFNs), in which input
weights and hidden layer bias are randomly chosen, and outputweights
are analytically determined through simple generalized inverse opera-
tion of the hidden layer output matrix. Different from traditional learn-
ing algorithms for SLFNs, the ELM algorithm aims to reach not only the
smallest training error but also the smallest norm of output weights
(Huang et al., 2006b). The learning speed of ELMalgorithm can be thou-
sands of times faster than traditional feedforward network learning al-
gorithms like back-propagation algorithm while obtaining better
generalization performance (Huang et al., 2006b). The ELMmodel pro-
vides a unified learning platform with a widespread type of feature
mappings and can be directly used in regression and multiclass classifi-
cation (Huang et al., 2012). The ELM algorithm avoids many difficulties
faced by traditional neural network training algorithms (Huang et al.,
2010). Therefore, the ELMmodel and its variants have been successfully
applied in pattern recognition (Chacko and Babu, 2011; Yang et al.,
2012; Zong et al., 2011), statistical prediction (Bhat et al., 2008;
EI-Sebakhy, 2008; Mantoro et al., 2011; Sun et al., 2008), classification
(Bharathi and Natarajan, 2011; Kwak and Kwon, 2008; Pal, 2008), and
regression/function approximation (Heeswijk et al., 2011; Rong et al.,
2009; Tang and Han, 2009).

The purpose of our work is to construct an ELM regression based
data-driven model for mapping mineral prospectivity. To this end, the
Lalingzaohuo district in Qinghai Province in China, which is located in
the eastern Kunlun orogenic belt and has a complex geological setting,
was selected as case study area; and the ELM regression and logistic re-
gression (Agterberg, 1974, 1989; Agterberg and Bonham-Carter, 1999;
Carranza and Hale, 2001; Carranza et al., 2008; Chen, 2015; Chen et
al., 2011; Mejía-Herrera et al., 2015) were applied to map polymetallic
prospectivity. The ROC curve (Chen and Wu, 2016; Hernandez-Orallo,
2013; Zou et al., 2007; Zweig and Campbell, 1993) and AUC metric
(Chen, 2015; Chen and Wu, 2016; Hanley and Mcneil, 1982) were
applied to evaluate the performance of the ELM regression and logistic
regression models in mapping polymetallic prospectivity. Polymetallic
targets were optimally delineated by using the Youden index (Chen,
2015; Chen and Wu, 2016) to determine the optimal threshold that
maximizes spatial association between the delineated polymetallic
targets and the discovered polymetallic deposits. Our study aims to
determine (a) whether ELM regression is a useful data-driven model
for mapping mineral prospectivity, (b) whether ELM regression can be
trained much faster than logistic regression, (c) whether ELM regres-
sion outperforms logistic regression in mapping mineral prospectivity,
and (d) the geological features that are critical for polymetallic mineral-
ization and can be used as spatial recognition criterion of polymetallic
prospectivity in the study area.

2. ELM algorithm for SLFNs

2.1. SLFNs

For N arbitrary distinct training samples (xi, ti), where xi=
(xi1,xi1,… ,xin)T∈Rnand ti=(ti1, ti1,… , tim)T∈Rm, SLFNs with L hidden
nodes andhidden-node function g(w,b,x) aremathematicallymodeled as

XL

j¼1
β jg wj; bj; xi

� � ¼ oi; i ¼ 1;2;…;N: ð1Þ

wherewj=(wj1,wj1,… ,wjn)T is the weight vector connecting the jth hid-
den node with n input nodes, βj=(βj1,βj1,… ,βjm)T is the weight vector

connecting the jth hidden nodewithm output nodes, and bj is the thresh-
old of the jth hidden node. The output-node function is usually chosen
linear.

The SLFNs with L hidden nodes and hidden-node function g(w,b,x)
can approximate the N distinct training samples with zero error. This

means that ∑N
i¼1koi−tik ¼ 0, i.e., there exist βj ,wj and bj such that

XL

j¼1
β jg wj; bj; xi

� � ¼ ti; i ¼ 1;2;…;N: ð2Þ

The above N equations can be written in matrix form:

Hβ ¼ T; ð3Þ

where

H ¼
g w1; b1; x1ð Þ ⋯ g wL; bL; x1ð Þ

⋮ ⋯ ⋮
g w1; b1; xNð Þ ⋯ g wL; bL; xNð Þ

2
4

3
5
N�L

; ð4Þ

β ¼
βT
1
⋮
βT
L

2
4
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5
L�m

; and T ¼
tT1
⋮
tTN

2
4

3
5
N�m

: ð5Þ

H in Eq. (4) is called the hidden layer outputmatrix of SLFNs (Huang
et al., 2004); the jth column of H is the jth hidden node output with
respect to inputs x1 ,x2,… ,xN.

If hidden-node function g(w,b,x) is infinitely differentiable, the
required number of hidden nodes L≤N (Huang et al., 2006b). Many
nonregular functions, such as sigmoidal, radial basis, sine, cosine,
and exponential functions are infinitely differentiable. When any
one of these functions is used as the hidden-node function of
SLFNs, the upper bound of the required number of hidden nodes is
the number of distinct training samples (Huang et al., 2012). For
any infinitely differentiable hidden-node function, SLFNswith N hidden
nodes can learn N distinct training samples exactly and it may require
less than N hidden nodes if learning error is allowed (Huang et al.,
2006b).

2.2. ELM algorithm

In the ELM algorithm, the hidden layer of SLFNs does not need to be
neuron-like and tuned (Huang and Chen, 2007, 2008; Huang et al.,
2012). The algorithm can be outlined as follows.

Given a training set ℵ={(xi, ti),xi∈Rn, ti∈Rm, i=1,2,… ,N}, hidden
node number L, and hidden-node function g(w,b,x),

Step 1: Randomly assign input weight wj and bias bj, j = 1, 2, …, L.
Step 2: Calculate the hidden layer output matrix H using Eq. (4).
Step 3: Calculate the output weight

β ¼ H†T ; ð6Þ

where T=(t1, t2,… , tN)T, H†is the Moore–Penrose generalized inverse
(Moore, 1920) of H.

Different methods can be used to calculate the Moore–Penrose
generalized inverse of a matrix, namely: orthogonal projection method,
orthogonalizationmethod, iterativemethod, and singular value decom-
position (SVD) (Serre, 2002). In the ELM algorithm, SVD is a commonly
used method for calculating the Moore–Penrose generalized inverse of
matrix H (Huang et al., 2006b). If matrix H is a large and ill-conditioned
matrix, Lanczos bidiagonalization (LBD) (Baglama and Reichel, 2006;
Elden, 2004; Simon and Zha, 2000) is an efficient iterative method for
computing the SVD of the matrix.
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