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We performed laser-heated diamond anvil cell experiments on bulk compositions in the systems MgO–SiO2–H2O
(MSH) and MgO–Al2O3–SiO2–H2O (MASH) that constrain the stability of hydrous phases in Earth's lower mantle.
Phase identification by synchrotron powder diffraction reveals a consistent set of stability relations for the high-
pressure, dense hydrous silicate phases D and H. In the MSH system phase D is stable to ~50 GPa, independent of
temperature from ~1300 to 1700 K. Phase H becomes stable between 35 and 40 GPa, and the phase H out reaction
occurs at ~55GPa at 1600Kwith a negative dT/dP slope of ~−75K/GPa. Between ~30 and50GPadehydrationmelt-
ing occurs at ~1800 Kwith a flat dT/dP slope. A cusp along the solidus at ~50 GPa correspondswith the intersection
of the subsolidus phase H out reaction, and the dT/dP melting slope steepens to ~15 K/GPa up to ~85 GPa.
In theMASH systemphase H is stable in experiments between ~45 and 115 GPa in all bulk compositions studied,
and we expect aluminous phase H to be stable throughout the lower mantle depth range beneath ~1200 km in
both peridotitic and basaltic lithologies. In the subsolidus, aluminous phase D is stable to ~55 GPa, whereas at
higher pressures aluminous phase H is the stable hydrous phase. The presence of hydrogen may sharpen the
bridgmanite to post-perovskite transition. The ambient unit cell volume of bridgmanite increases systematically
with pressure above ~55 GPa, possibly representing an increase in alumina content, and potentially hydrogen
content, with depth. Bridgmanite in equilibrium with phases D and H has a relatively low alumina content,
and alumina partitions preferentially into the hydrous phases. The melting curves of MASH compositions are
shallower than in the MSH system, with dT/dP of ~6 K/GPa. Phase D and H solid solutions are stable in cold, hy-
drated subducting slabs and can deliver water to the deepest lowermantle. However, hydrated lithologies in the
lower mantle are likely to be partially molten at all depths along an ambient mantle geotherm.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The lower mantle is the most massive potential hydrogen-bearing
reservoir in Earth. There are several mechanisms whereby hydrous
components may have been delivered to the deep mantle over geologic
time, creating a long-lived hydrogen reservoir. As the planet accreted
and grew in size, primordial volatiles may have become isolated in
the deepest parts of the mantle. Primordial hydrogen could have
been retained in a primitive lower mantle reservoir along with other
volatile elements, and such a reservoir is supported by the isotopic com-
position of noble gases from mantle-derived samples (Marty, 2012;
Mukhopadhyay, 2012; Halliday, 2013). Modest solubility of hydrous
species in a globalmagma oceanmay have allowed themantle to retain
significant hydrogen, especially if outgassing were inefficient, or if a

relatively small fraction of late incoming metal in a giant impact equili-
brated with the magma ocean (Mookherjee et al., 2008; Mysen et al.,
2009; Hirschmann et al., 2012). The possibility that magma ocean
crystallization occurred from the mid-lower mantle outward may
have resulted in a deep basal magma body (Stixrude and Karki, 2005;
Labrosse et al., 2007; Mosenfelder et al., 2007), which would be expect-
ed to concentrate incompatible elements like hydrogen. It is also possi-
ble that mantle overturn after crystallization delivered an unknown
quantity of water and other volatiles into the deep mantle (Elkins-
Tanton, 2008). And perhaps most importantly, billions of years of
plate tectonics will have recycled lithosphere into the deep mantle
with the potential to deliver hydrous components (Ohtani et al.,
2001b; Komabayashi et al., 2004; Ohtani, 2005; Ohira et al., 2014). In-
deed, melting at the top of the lowermantle, possibly related to subduc-
tion of hydrous components, has recently been suggested on the basis of
a combination of experimental and seismic observations (Schmandt
et al., 2014).
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There are limited phase equilibrium data at the extreme P–T condi-
tions of the lower mantle in volatile bearing systems. The amount of
water that can be stored in silicate bridgmanite may be small, although
the issue is not entirely resolved, with estimated solubility ranging over
several orders of magnitude (Meade et al., 1994; Bolfan-Casanova et al.,
2000; Murakami et al., 2002; Litasov et al., 2003; Bolfan-Casanova,
2005). If the water content of nominally anhydrous lower mantle
phases is very low, then water might be stored in solid hydrous silicate
phases,molten hydrous silicate, or possibly even aswater–ice (Bina and
Navrotsky, 2000; Schwager et al., 2004). Fundamental to modeling the
behavior of hydrogen in the deep Earth is knowledge of the phase rela-
tions of the solids and liquids that can potentially host hydrogen at the
extreme conditions of the lower mantle.

There is a rich diversity of dense hydrous silicates that are stable in
mafic and ultramafic assemblages at upper mantle pressures and low
to moderate temperatures (Ohtani et al., 2000; Ohtani et al., 2001b;
Komabayashi et al., 2004;Ohtani et al., 2004;Ohtani, 2005).Water trans-
port from the transition zone into the lowermantle is controlled primar-
ily by the stability of phase D, an orthorhombic mineral with the ideal
formula MgSi2H2O6, which according to available data has a stability
limited to about 45 GPa and, depending especially on its alumina con-
tent, possibly to temperatures exceeding 2000 K (Shieh et al., 1998;
Shinmei et al., 2008; Ghosh and Schmidt, 2014; Pamato et al., 2015). It
is also known that a high-pressure form of diaspore (α-AlOOH), called
δ-AlOOH and with an orthorhombic symmetry very close to that of
stishovite in the CaCl2-type structure, is stable throughout the mantle
depth range and may be present in suitably aluminous and hydrated
lithologies (Suzuki et al., 2000; Ohtani et al., 2001a; Tsuchiya et al.,
2002; Sano et al., 2008).Mg and Si can substitute into the δ-AlOOH struc-
ture, causing subtle symmetry changes probably related to disorder of
hydrogen (Suzuki et al., 2000; Komatsu et al., 2011).

Recently, the discovery of a new phase closely related to δ-AlOOH,
with the stoichiometric compositionMgSiH2O4,was predicted by ab initio
methods with a calculated stability limit of ~50 GPa (Tsuchiya, 2013),
potentially extending the depth range to which hydrous magnesian sili-
cates can deliver water into the lower mantle. This new phase has now
been observed in experiments up to 50 GPa in the MgO–SiO2–H2O
(MSH) system, although an upper pressure limit has yet to be deter-
mined, and has been given the name phase H (Nishi et al., 2014). The
structure of phase H has recently been shown to have orthorhombic
pnnm symmetry (Bindi et al., 2014;Nishi et al., 2014). Given the similarity
in crystal structures, and because it has already been shown that Mg and
Si dissolve into δ-AlOOH, it may be that a considerable or complete solid
solution exists between these phases, and that an (Mg,Si,Al)OOH phase
may be stable throughout much or all of the mantle depth range in com-
monmantle lithologies. Indeed, aluminous phase H has been found to be
stable to the base of the mantle in a composition with ~30 mol% Al2O3 in
the system MgO–Al2O3–SiO2–H2O (MASH) (Ohira et al., 2014).

Here we investigate phase relations in the systemsMgO–Al2O3–H2O
(MSH) and MgO–Al2O3–SiO2–H2O (MASH) at lower mantle pressures
and high temperatures using the laser-heated diamond anvil cell,
with the aim of determining the stability of hydrous phases and
constraining melting temperatures of model hydrated mantle litholo-
gies. Synchrotron-based powder diffraction is used to identify phases
in run products, constraining the stability of phases D and H in model
peridotitic and basaltic lithologies in these systems.We use thermal sig-
nal processing and high-resolution imaging to constrain melting tem-
peratures, and evaluate the stability of solid and liquid hydrous phases
in these systems at lower mantle conditions.

2. Experimental and analytical methods

2.1. Starting compositions

The compositions of the seven starting mixtures used in this study,
two in the MSH system and five in the MASH system, are provided in

Table 1 and are shown on Fig. 1. In each system we investigate both
MgO-rich and SiO2-rich compositions in order to explore differences be-
tween model peridotitic and basaltic systems, respectively. In the MSH
system, compositions have ~9 to 13 mol% H2O, while in the MASH sys-
tem compositions have ~4 to 7 mol% H2O. Al2O3 contents in the MASH
system range from ~2 to 10mol%, again to emulate differences between
peridotitic and basaltic bulk compositions.

Starting compositions are synthesized as mixtures of anhydrous
silicate glass and brucite. In the MSH system, MgSiO3 glass was synthe-
sized by fusing an ~1 g stoichiometric mixture of reagent grade MgO
and SiO2 powders in a Pt capsule inserted into a 1 atm furnace at
~1680 °C. Crystal-free glass forms upon quenching into water. Glass
mixtures in the MAS system are the same as those used in previous
work (Walter et al., 2004), and were synthesized under similar condi-
tions. Quenched glasses were ground and refused once, and then re-
ground to a fine powder under alcohol. Glass powders were mixed
with natural brucite (Mg(OH)2), the phase purity of which was con-
firmed by X-ray diffraction that showed only brucite reflections and no
indication of carbonate that can form by reaction with air (Ghosh and
Schmidt, 2014). Mixtures were ground typically for 2 h in an agatemor-
tar. Pt black was added (10% by weight), and samples reground under
acetone until the average Pt grain size was ~1 μm or less.

2.2. Diamond anvil cell experiments

2.2.1. High pressure
Experiments were made in ‘Princeton-type’ symmetric diamond

anvil cells, incorporating Type Ia diamondswith culet diameters ranging
from 120 to 250 μm. Samples are held in Re gaskets pre-indented to a
thickness of ~50 μm. Chambers ~ 30 μm in diameter are laser-drilled
in the indentation. The chamber size is purposefully designed in order
to match the laser focal size in order to heat as much of the sample as
uniformly as possible, so as to minimize the amount of un-reacted or
partially reacted material that can complicate interpretation of diffrac-
tion measurements. An added benefit of a small chamber size is that
multiple chambers can be used in experiments with culet sizes of 200
(3-holes) or 250 μm(4-holes), as shown in Fig. 2. Thismultiple chamber
design allows a range of temperatures and pressures to be investigated
in a single run. Samples are loaded as powders directly into the sample
chambers.We chose not to use a thermally insulating pressuremedium
in this study in order to avoid the possibility of sample contamination,
partial reactivity with insulating material, or H2O loss from the heated
sample environment.

Pressure is measured using the Raman shift of the singlet peak of the
diamond anvil at the culet surface that is related to stress in the (001)
direction (Hanfland et al., 1986). In this way we avoid putting ruby
(Al2O3) grains in the sample chamber for a pressure marker, and unlike
ruby, the signal from this peak remains strong and highly resolvable
even to the Mbar range. Raman measurements are made with a Jobin-
Yvon T64000 Raman spectrometer in either single- or triple-additive
mode and using a confocal aperture of 200 μm. Previous workers have
used the high frequency edge of the entire Raman signal to construct a
pressure scale (Akahama and Kawamura, 2010). However, we find
that the singlet peak is a robust feature in most cases when making
highly confocal measurements that can be precisely fitted, typically

Table 1
Experimental starting compositions (mol fraction).

Composition MgO Al2O3 SiO2 H2O

MSH1 0.500 – 0.372 0.128
MSH2 0.320 – 0.590 0.090
MASH1 0.487 0.025 0.450 0.038
MASH2 0.477 0.046 0.418 0.059
MASH3 0.443 0.022 0.497 0.038
MASH6 0.452 0.096 0.386 0.066
MASH7 0.405 0.085 0.445 0.065
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