

Available online at www.sciencedirect.com

ScienceDirect

Geochimica et Cosmochimica Acta 164 (2015) 502-522

Geochimica et Cosmochimica Acta

www.elsevier.com/locate/gca

Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments

W. Andrew Jackson ^{a,*}, J.K. Böhlke ^b, Brian J. Andraski ^c, Lynne Fahlquist ^d, Laura Bexfield ^e, Frank D. Eckardt ^f, John B. Gates ^g, Alfonso F. Davila ^h, Christopher P. McKay ⁱ, Balaji Rao ^a, Ritesh Sevanthi ^a, Srinath Rajagopalan ^j, Nubia Estrada ^a, Neil Sturchio ^k, Paul B. Hatzinger ^l, Todd A. Anderson ^a, Greta Orris ^m, Julio Betancourt ^b, David Stonestrom ⁿ, Claudio Latorre ^{o,p}, Yanhe Li ^q, Gregory J. Harvey ^r

^a Texas Tech University, Lubbock, TX 79409, USA ^b U.S. Geological Survey, 431 National Center, Reston, VA 20192, USA ^c U.S. Geological Survey, 2730 N. Deer Run Rd, Carson City, NV 89701, USA ^d U.S. Geological Survey, 1505 Ferguson Ln, Austin, TX 78754, USA ^e U.S. Geological Survey, 5338 Montgomery Blvd. NE, Suite 400, Albuquerque, NM 87109, USA Dept. Environ. & Geog. Sci., University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa ^g Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, 217 Bessey Hall, Lincoln, NE 68588-0340, USA ^h Carl Sagan Center at the SETI Institute, 189 Bernardo Ave., Mountain View, CA 94043, USA ⁱNASA Ames Research Center, Moffett Field, CA 94035, USA ^j Department of Civil Engineering, SSN College of Engineering, Kalavakkam 603110, India ^k Department of Geological Sciences, University of Delaware Newark, DE 19716, USA ¹CB&I Federal Services, Lawrenceville, NJ 08648, USA ^m U.S. Geological Survey, Tucson, AZ, USA ⁿ U.S. Geological Survey, Menlo Park, CA, USA o Institute of Ecology & Biodiversity (IEB), Santiago, Chile ^p Departamento de Ecología, Pontificia Universidad Católica de Chile, Santiago, Chile ^q Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China ^r USAFSAM/OEC, Wright-Patterson AFB, OH 45433, USA

Received 2 June 2014; accepted in revised form 7 May 2015; available online 14 May 2015

Abstract

Natural perchlorate (ClO_4^-) is of increasing interest due to its wide-spread occurrence on Earth and Mars, yet little information exists on the relative abundance of ClO_4^- compared to other major anions, its stability, or long-term variations in production that may impact the observed distributions. Our objectives were to evaluate the occurrence and fate of ClO_4^- in groundwater and soils/caliche in arid and semi-arid environments (southwestern United States, southern Africa, United Arab Emirates, China, Antarctica, and Chile) and the relationship of ClO_4^- to the more well-studied atmospherically deposited anions NO_3^- and Cl^- as a means to understand the prevalent processes that affect the accumulation of these species over various time scales. ClO_4^- is globally distributed in soil and groundwater in arid and semi-arid regions on Earth at concentrations ranging from 10^{-1} to 10^6 µg/kg. Generally, the ClO_4^- concentration in these regions increases with aridity index,

E-mail address: andrew.jackson@ttu.edu (W.A. Jackson).

^{*} Corresponding author.

but also depends on the duration of arid conditions. In many arid and semi-arid areas, NO₃ and ClO₄ co-occur at molar ratios (NO $_3$ /ClO $_4$) that vary between $\sim 10^4$ and 10^5 . We hypothesize that atmospheric deposition ratios are largely preserved in hyper-arid areas that support little or no biological activity (e.g. plants or bacteria), but can be altered in areas with more active biological processes including N₂ fixation, N mineralization, nitrification, denitrification, and microbial ClO₄ reduction, as indicated in part by NO₃ isotope data. In contrast, much larger ranges of Cl⁻/ClO₄ and Cl⁻/NO₃ ratios indicate Cl⁻ varies independently from both ClO₄ and NO₃. The general lack of correlation between Cl⁻ and ClO₄ or NO₃ implies that Cl⁻ is not a good indicator of co-deposition and should be used with care when interpreting oxyanion cycling in arid systems. The Atacama Desert appears to be unique compared to all other terrestrial locations having a NO₃/ClO₄ molar ratio $\sim 10^3$. The relative enrichment in ClO_4^- compared to Cl^- or NO_3^- and unique isotopic composition of Atacama $ClO_4^$ may reflect either additional in-situ production mechanism(s) or higher relative atmospheric production rates in that specific region or in the geological past. Elevated concentrations of ClO₄ reported on the surface of Mars, and its enrichment with respect to Cl⁻ and NO₃, could reveal important clues regarding the climatic, hydrologic, and potentially biologic evolution of that planet. Given the highly conserved ratio of NO_3^-/ClO_4^- in non-biologically active areas on Earth, it may be possible to use alterations of this ratio as a biomarker on Mars and for interpreting major anion cycles and processes on both Mars and Earth, particularly with respect to the less-conserved NO₃ pool terrestrially. © 2015 Elsevier Ltd. All rights reserved.

1. INTRODUCTION

The oxyanion perchlorate (ClO₄) has received increasing attention due to its widespread occurrence on Earth and Mars, and yet its distribution and relation to other more understood atmospheric species are poorly defined. Terrestrial ClO₄ is largely produced in the atmosphere and deposited in dry and wet deposition (Rajagopalan et al., 2009; Andraski et al., 2014). It is abiotically stable in most near-surface environments but can be irreversibly reduced biologically under anoxic conditions. In these respects ClO₄⁻ is similar to NO₃⁻, although NO₃⁻ may be biologically reduced preferentially to ClO₄ in mixed redox conditions. Major differences between the two species include a biological production mechanism for NO₃ (nitrification) and the assimilation of NO_3^- by plants, from which N may be removed from the NO₃ reservoir into stored organic matter or returned through subsequent nitrification. The terrestrial NO₃ mass balance is complicated further by varying amounts of N₂ fixation, which may result in net changes to the free NO₃ reservoirs in soils and groundwaters. Given these attributes, NO₃ and ClO₄ should co-occur in arid environments. In the driest and coldest locations, where biological activity is minimal, the ratio of NO₃/ClO₄ should be similar to that of total atmospheric deposition; whereas in less arid environments, NO₃/ClO₄ ratios could be higher or lower than the deposition ratio, depending on the relative importance of net biologic NO₃ (or N) addition or removal. Further, the isotopic composition of NO_3^- in relation to the NO_3^-/ClO_4^- ratio should be consistent with the net effects of mixing of atmospheric and biogenic NO₃, commensurate with the degree of assimilation and reprocessing of the NO₃ atmospheric fraction. Such a conceptual model can be used to evaluate environmental conditions under which atmospherically deposited species accumulate and the net effects of soil processes on these species.

Until recently, ClO₄ was considered to be present in the environment largely from military and commercial sources, but its occurrence in pre-industrial soils and groundwater in

the Atacama Desert (Ericksen, 1981), Antarctic Dry Valleys (Kounaves et al., 2010; Jackson et al., 2012), Mojave Desert and Southern High Plains (Jackson et al., 2010), Middle Rio Grande Basin (Plummer et al., 2006), as well as on the surface of Mars (Hecht et al., 2009; Glavin et al., 2013), all demonstrate that ClO₄ forms naturally. Isotope data including Δ^{17} O and 36 Cl/Cl values of natural ClO₄ indicate that it is produced largely in the stratosphere from oxidative reactions of chloro-oxyanions by O₃ oxidation and/or perhaps UV-mediated photo-oxidation (Bao and Gu, 2004; Sturchio et al., 2009; Jackson et al., 2010). ClO₄ is deposited at the Earth's surface by wet and dry atmospheric deposition. Modern ClO₄ wet deposition rates measured in North America averaged 64 mg/ha-year (Rajagopalan et al., 2009) and total deposition rates measured in the Amargosa Desert (southwestern Nevada) over a 6-year period averaged 343 mg/ha-year (Andraski et al., 2014). Accumulations of ClO₄ (93–1050 g/ha) have been observed in deep unsaturated-zone salt bulges throughout the southwestern United States (U.S.) that accumulated during the late Quaternary, roughly over the last 100,000-10,000 years based on Cl⁻ deposition rates and inventories (Rao et al., 2007).

ClO₄ is abiotically unreactive under typical terrestrial conditions but can be microbially (Archea and Bacteria) reduced under anoxic conditions as an electron acceptor (Coates and Achenbach, 2004; Liebensteiner et al., 2013). Reduction of ClO₄ can be coupled to oxidation of various electron donors including organic matter, sulfide, and H₂. In electron donor-limited environments, the presence of NO₃ at greater concentrations has been shown to inhibit ClO₄ reduction (Tan et al., 2004a; Farhan and Hatzinger, 2009). The capacity for ClO_4^- reduction appears to be common and has been demonstrated in a number of environments including Antarctic Dry Valley lakes (Jackson et al., 2012). Plants accumulate ClO₄ primarily in transpiring tissue (e.g. leaves) (Jackson et al., 2005; Voogt and Jackson, 2010), and do not generally appear to transform it substantially (Tan et al., 2006; Seyfferth et al., 2008), although this may occur in some cases (Van Aken and

Download English Version:

https://daneshyari.com/en/article/6437974

Download Persian Version:

https://daneshyari.com/article/6437974

Daneshyari.com