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Abstract

Chemical equilibrium calculations are essential for many environmental problems. It is also a fundamental tool for chem-
ical kinetics and reactive transport modelling, since these applications may require hundreds to billions equilibrium calcula-
tions in a single simulation. Therefore, an equilibrium method for such critical applications must be very efficient, robust and
accurate. In this work we demonstrate the potential effectiveness of a novel Gibbs energy minimisation algorithm for reactive
transport simulations. The algorithm includes strategies to converge from poor initial guesses; capabilities to specify non-
linear equilibrium constraints such as pH of an aqueous solution and activity or fugacity of a species; a rigorous phase
stability test to determine the unstable phases; and a strategy to boost the convergence speed of the calculations to quadratic
rates, requiring only few iterations to converge. We use this equilibrium method to solve geochemical problems relevant to
carbon storage in saline aquifers, where aqueous, gaseous and minerals phases are present. The problems are formulated
to mimic the ones found in kinetics and transport simulations, where a sequence of equilibrium calculations are performed,
each one using the previous solution as the initial guess. The efficiency and convergence rates of the calculations are presented,
which require an average of 1–2 iterations. These results indicate that critical applications such as chemical kinetics and reac-
tive transport modelling can potentially benefit by using this multiphase equilibrium algorithm.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/3.0/).

1. INTRODUCTION

In a chemical equilibrium state, the forward and reverse
rates of the reactions in a system are equal, and therefore no
changes in the concentrations of its species are observed
with time. It is possible to demonstrate, with the use of
the first and second laws of thermodynamics, that a chem-
ical system undergoing an isobaric and isothermal process
progress towards a state of minimum Gibbs free energy.

Other conditions also apply during this process, such as
mass conservation of the chemical elements.

Therefore, an equilibrium problem consists of finding
the number of moles of the chemical species that simulta-
neously minimises the Gibbs free energy of the system
and satisfies a system of equilibrium constraints (Smith
and Missen, 1982). In addition, a non-negativity constraint
for the number of moles is required in order to guarantee a
physically feasible molar composition.

The applicability of chemical equilibrium solvers for
environmental problems is wide. For instance, speciation
modelling of aquatic systems, calculation of solubilities of
gases and minerals, analysis of the effect of pH on the dis-
solution of a mineral, investigation of water-gas-rock effects
during carbon storage in geological formations, and
radioactive waste disposal modelling are all examples of

http://dx.doi.org/10.1016/j.gca.2014.01.038

0016-7037/� 2014 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

⇑ Corresponding author. Tel.: +44 07845452320.
E-mail addresses: allan.leal@imperial.ac.uk (A.M.M. Leal),

m.blunt@imperial.ac.uk (M.J. Blunt), tara.laforce@csiro.au (T.C.
LaForce).

www.elsevier.com/locate/gca

Available online at www.sciencedirect.com

ScienceDirect

Geochimica et Cosmochimica Acta 131 (2014) 301–322

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.gca.2014.01.038
http://creativecommons.org/licenses/by/3.0/
mailto:allan.leal@imperial.ac.uk
mailto:m.blunt@imperial.ac.uk
mailto:tara.laforce@csiro.au
http://dx.doi.org/10.1016/j.gca.2014.01.038


Nomenclature

Greek symbols

ai the ith species in the chemical system
ap

i the ith species in the pth phase
ar the convergence rate of an equilibrium calcula-

tion, see Eq. (4.2)
a the set of species in the chemical system
ap the set of species in the pth phase
e the set of elements in the chemical system
�K the phase stability tolerance
ej the jth element in the chemical system
ui the fugacity coefficient of the gaseous species

with index i, see Eq. (2.4)
ci the activity coefficient of the aqueous species

with index i, see Eq. (2.3)
Kp the stability index of the pth phase, see Eq. (3.12)
_l the constant perturbation parameter used when

the watchdog strategy is active
l̂ the perturbation parameter of the interior-point

method, see Eq. (3.9)
li the chemical potential of the ith species, see Eq.

(2.2)
l
�

i the standard chemical potential of the ith spe-
cies, see Eq. (2.3)

lw the threshold used to activate the watchdog
strategy

Xp the generalised saturation index of the pth phase,
see Eq. (3.12)

P the number of phases in the chemical system

Roman symbols

aHþ the activity of the ionic species Hþ, see Eq. (2.13)
ai the activity of the ith species, see Eq. (2.3)
aH

i the specified activity of the ith species, see Eq.
(2.14)

b the molar abundance vector of the elements, see
Eq. (2.5)

bj the molar abundance of the jth element, see Eq.
(2.5)

bH

j the specified number of moles of the jth element,
see Eq. (2.8)

c the equality constraint function in a optimisation
problem, see Eq. (3.1)

D the diagonal scaling matrix of the primal vari-
able x, see Eq. (3.10)

e the vector of all ones, see Eq. (3.9).
E the number of elements in the chemical system
Fl̂ the residual function of the perturbed KKT con-

ditions, see Eq. (3.9)
f the objective function in a optimisation problem,

see Eq. (3.1)
G the Gibbs free energy function of the chemical

system, see Eq. (2.1)
h the vector-valued equilibrium constraint func-

tion, see Eq. (2.1)
Ip the set of indices of the species in the pth phase
Ig the indices of the gaseous species

iH the local index of the ith species in its phase, see
Eq. (3.13)

L the Lagrange function of a optimisation prob-
lem, see Eq. (3.2)

M the number of equilibrium constraints, see Eq.
(2.1)

m the number of equality constraints in a optimisa-
tion problem, see Eq. (3.1)

mi the molality of the aqueous species with index i,
see Eq. (2.3)

n the molar abundance vector of the species, see
Eq. (2.1)

N the number of species in the chemical system
n the number of variables in a optimisation prob-

lem, see Eq. (3.1)
Np the number of species in the pth phase
ni the number of moles of the ith species, see Eq.

(2.2)
P the pressure of the chemical system, see Eq. (2.1)
P � the reference pressure for the activity of gaseous

species, see Eq. (2.4)
P i the partial pressure of the ith gaseous species, see

Eq. (2.16)
R the universal gas constant, see Eq. (2.3)
rk the calculation residual at the kth iteration, see

Eq. (4.2)
T the temperature of the chemical system, see Eq.

(2.1)
W the formula matrix of the chemical system, see

Eq. (2.5)
wj the jth row of the formula matrix W, see Eq.

(2.8)
W the number of watchdog iterations after which

the algorithm checks for filter acceptance
�x the scaled primal variables, see Eq. (3.10)
x̂ the primal solution in a previous calculation, see

Eq. (3.11)
X the diagonal matrix defined by X :¼ diagðxÞ, see

Eq. (3.6)
x the vector of variables in a optimisation prob-

lem, see Eq. (3.1)
xg

i the molar fraction of the ith species in the gas-
eous phase, see Eq. (3.13)

xp
i the molar fraction of the ith species in the pth

phase, see Eq. (2.4)
y; z the Lagrange multipliers of a optimisation prob-

lem, see Eq. (3.2)
yj; zi the Lagrange multipliers with respect to the jth

constraint and ith variable, see Eq. (3.13)
za the vector of electrical charges of the aqueous

species, see Eq. (2.10)

Mathematical symbols

rx the gradient operator with respect to the primal
variables x only

T the transpose operator of a matrix or vector
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