Accepted Manuscript

The sources and time-integrated evolution of diamond-forming fluids - trace elements and Sr isotopic evidence

Ofra Klein-BenDavid, D. Graham Pearson, Geoff M. Nowell, Chris Ottley, John C.R. McNeill, Alla Logvinova, Nikolay V. Sobolev

PII:	S0016-7037(13)00521-8
DOI:	http://dx.doi.org/10.1016/j.gca.2013.09.022
Reference:	GCA 8459
To appear in:	Geochimica et Cosmochimica Acta
Received Date:	20 June 2012
Revised Date:	16 August 2013
Accepted Date:	17 September 2013

Please cite this article as: Klein-BenDavid, O., Graham Pearson, D., Nowell, G.M., Ottley, C., McNeill, J.C.R., Logvinova, A., Sobolev, N.V., The sources and time-integrated evolution of diamond-forming fluids - trace elements and Sr isotopic evidence, *Geochimica et Cosmochimica Acta* (2013), doi: http://dx.doi.org/10.1016/j.gca. 2013.09.022

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

.

	1
The sources and time-integrated evolution of diamond-forming fluids - trace	2
elements and Sr isotopic evidence	3
Ofra Klein-BenDavid ^{1,2*} D. Graham Pearson ³ , Geoff M. Nowell ¹ , Chris Ottley ¹ , John	4
C. R. McNeill ¹ , Alla Logvinova ⁴ and Nikolay V. Sobolev ⁴ .	
	6
1) Northern Centre for Isotopic and Elemental Tracing, Department of Earth Sciences, Durham	
University, South Road, Durham, DH1 3LE, UK.	
2) Department of Chemistry, Nuclear Research Center Negev, P.O. Box 9001, Beer-Sheva 84190,	9
Israel. e-mail: ofrak1@gmail.com	10
3) Department of Earth & Atmospheric Sciences, University of Alberta, Edmonton AB, T6G 2E3,	11
Canada.	12
4) Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Koptyug	13
Ave., 5, Novosibirsk 90, 650090, Russia.	14 15
	15
	10
Abstract	17
	18
Sub-micrometer inclusions in fibrous diamond growth zones carry high-density fluids	19
(HDF) from which the host diamonds have precipitated. The chemistry of these fluids	20
is our best opportunity of characterizing the diamond-forming environment. The	21
major and trace element patterns of diamond forming fluids vary widely. Such	22
elemental signatures can be easily modified by a variety of mantle processes whereas	23
radiogenic isotopes give a clear fingerprint of the time-integrated evolution of the	24
fluid source region. Thus, the combination of elemental and isotope data is a powerful	25
tool in constraining the origin of fluids from which diamonds precipitate. Here we	26
present combined trace element composition (34 diamonds) and Sr isotopic data (23	27
diamondo) for fluid rich diamondo from six worldwide locations. The Nd and Dh	
diamonds) for fluid-field diamonds from six worldwide locations. The Nd and Pb	
isotopic composition of two of the diamonds were also obtained. Several of the	29
samples were analysed in at least 2 locations to investigate variations in the fluid	30
during diamond growth. The data was acquired using an off-line laser sampling	
technique followed by solution ICPMS and TIMS analysis.	32
	33

The Sr isotopic compositions of diamond fluids from the different suites range 34 between convecting mantle values for Udachnaya (87 Sr/ 86 Sr₃₆₃ = 0.70300±16 to 35

Download English Version:

https://daneshyari.com/en/article/6438666

Download Persian Version:

https://daneshyari.com/article/6438666

Daneshyari.com