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Estimating the hazard associated with a volcanic eruption requires an understanding of previous eruptive
episodes to forecast future events. This involves calculating how destructive a future eruption is likely to be by
estimating the magnitude of eruptive activity and likelihood of various hazardous phenomena. Importantly
though, eruptive histories for individual volcanoes can suffer from a lack of observations and thus might not be
representative for all future eruption scenarios. Consequently, a methodology is developed to combine eruptive
histories from multiple volcanoes into an event tree framework to inform forecasts at individual volcanoes. It is
based on a hierarchical Bayesian approach in which model parameters are derived for a group of volcanoes
and then updated on an individual basis. However, eruptive histories are not simply aggregated and the model
allows for possible heterogeneities in eruptive regimes. Continuous probability distributions are employed to
capture the relative uncertainties of both global and individual records and posterior distributions for eruption
magnitudes and hazardous phenomena are computed using Markov chain Monte Carlo techniques. The model
is designed to initially include no subjective judgement of probabilities but is developed so that information
from other analyses can be incorporated. While this article uses the hierarchical Bayesian approach specifically
for event forecasting, themethodology has the potential to be used in awide range of problems regarding hazard
assessment and for the purposes of causal inference and data reduction.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Volcanoes pose significant risks for human populations living in
proximal areas. Attempts to forecast volcanic eruptions occur at a
variety of timescales from hours to decades and can involve amultitude
of different datasets, such as eruptive histories or time series of mon-
itoring observables (Marzocchi and Bebbington, 2012). However,
within the field of volcanic hazard assessment a common issue
with interpreting and analysing datasets is a lack of observations at
individual volcanoes. This could be due to resource constraints
restricting the ability to record eruptive activity or perhaps simply
that the eruptive history of a volcano is limited. The result is that hazard
assessments performed for volcanoeswhere data are scarce are likely to
be extremely uninformative and potentially inaccurate. Consequently,
this has resulted in the employment of subjective judgement using
techniques such as expert elicitation (Aspinall and Cooke, 2013) rather
than the results from empirical analyses when little data exists.

Where data are scarce an alternative empirical approach is to
aggregate datasets from groups of analogous volcanoes (Rodado
et al., 2011). However, this involves some subjectivity as to how to
combine these data, and assumptions that observations are independent

and identically distributed. However, it is tricky tomake this assumption
as no two volcanoes are precise analogues of each other and thus assess-
ments will be susceptible to heterogeneities. Nevertheless, artificially
increasing the size of datasets by incorporating observations from mul-
tiple volcanoes has promise. It has the potential to improve the certainty
of assessments while also ensuring that so-called “black swan” events
are accounted for (Woo, 2011). For example, if a volcanic record con-
tains only low magnitude eruptions, it might not be correct to as-
sume that all future eruption magnitudes will be of similar nature
and thus a full range of eruption magnitudes must be considered.
Consequently, the occurrence rate for unobserved magnitudes
must be made based upon observations from other records. Further
reasoning for the concept of combining observations from multiple
volcanoes is supported by the continuing development of global
databases of monitoring data and eruption records (Siebert and
Simkin, 2002; Crosweller et al., 2012), which are improving the
ease with which such studies could be performed.

A common approach for eruption forecasting is the use of event tree
structures that contain a series of interconnected nodes (Newhall and
Hoblitt, 2002; Marzocchi et al., 2004; Sparks and Aspinall, 2004; Neri
et al., 2008; Sobradelo and Martí, 2010). As one progresses through
the event tree, along a series of unique branches, the nodes relate to
more specific events until a final outcome is reached. To calculate the
probabilities at each node Bayesian methods have been developed
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that allow various data sources, including both empirical observations
and subjective judgement, to be integrated together (Marzocchi et al.,
2008; Marzocchi et al., 2010; Sobradelo et al., 2013). The purpose of
this article is to couple a robust statistical approach based on a Bayesian
method to share data between volcanoes and to account for both group-
level similarities and individual-volcano heterogeneities with an event
tree approach to assess long-term volcanic hazard.

2. Hierarchical Bayesian model

Hierarchical modelling is a method used to break down a complex
problem into layers, where each layer can bemodelled using a probabil-
ity distribution. The Bayesian approach developed by Marzocchi et al.
(2008, 2010) specifies a probabilitymodel for the data given specific pa-
rameters. A hierarchical approachwill then specify amodel for these pa-
rameters given hyper-parameters; and perhaps a model for the hyper-
parameters given other, higher-level hyper-parameters. The number
of layers depends upon how the problem is modelled and how individ-
uals (i.e. volcanoes) in themodel are grouped together. Ultimately there
is no restriction on the number of layers, although as the number in-
creases themodel often becomes more abstract and potentially difficult
to interpret. Here, the number of levels is restricted to two; firstly a
probability distribution for each event (i.e. model parameters); and sec-
ondly parameters on these model parameters (i.e. model hyper-
parameters). By introducing these hierarchies it allows multiple volca-
noes to be modelled together by assuming that the parameters of the
prior distribution for an event are constant across the group. This
means that without observing the data (i.e. no of eruptions for each re-
spective VEI) the probability of each event (i.e. VEI eruption) is constant
across the group. The posterior distributions for these model hyper-
parameters are thus dependent on data from all the volcanoes in the
model. The group-level prior is then updated individually for each vol-
cano based upon its respective eruptive record. For this structure to
exist, an important starting assumption of exchangeability must be
made. A set of random variables are exchangeable (and thus exhibit
symmetry) if their joint distribution is invariant to permutations of
their labels. Therefore, the parameters of the model (e.g. probability
of a VEI magnitude at a particular volcano) are identically distributed if
nothing but the data (e.g. number of eruptions) can be used to distin-
guish between the volcanoes. Consequently, the basis upon which ana-
logue volcanic records are chosen to be exchangeable is important for
the validity of the model.

The model that is developed here expands the approach of
Marzocchi et al. (2008, 2010), which aims to calculate the probabili-
ties for N mutually exclusive events and employs Bayesian inference
to update prior beliefs using appropriate observations. In this previ-
ous approach each mutually exclusive event (j) relates to one of a
number of states (J) that an individual volcano can take. For example, j
maybe a specific VEImagnitude froma range of VEI eruptionmagnitudes.
The prior beliefs are parameterised using a Dirichlet distribution and up-
dated using aMultinomial likelihood, which is a conjugate distribution to
the Dirichlet. The Dirichlet prior is defined by J alpha parameters (j) and
the likelihood the number observations for each state (xj) where n is
the total number of recorded events for a volcano (e.g. total number of
eruptions recorded). These same priors and likelihood functions are
used herewith the addition of an index parameter i representing each in-
dividual volcano (Eqs. (1) and (2)).

θi; j ∼ Dir α j

� �
ð1Þ

xi; j ∼ Multi θi; j;ni

� �
ð2Þ

Choosing the parameters of the model (i.e. the α parameters)
will determine the informativeness of the likelihood function and the
overall performance of the model. Where no relevant observations or

understanding exists the prior can be chosen to be noninformative,
for example a uniform distribution (e.g. Sandri et al., 2012), which
reflects no prior knowledge. Alternatively the prior can be chosen to
be informative and based on previous observations and the understand-
ing of the volcanic processes. The benefit of a noninformative prior is
that it allows the data to fully control the posterior distribution without
the introduction of biases associated with subjective judgement of
model parameters. However, due to the sparse nature of eruption
records and the various recording biases associated with historical and
geological records (Coles and Sparks, 2006), a noninformative approach
will likely lead to inaccurate results that are not representative of the
true understanding of the volcanic processes. Consequently, model
parameters are commonly defined using results from other analytical
models or using methods such as expert elicitation (e.g. Sobradelo and
Martí, 2010).

In the model developed by Marzocchi et al. (2008, 2010) the vari-
ance in the model, or confidence in the prior distribution is
characterised by an “equivalent number of data” parameter. The
value of this parameter requires a subjective judgement of the informa-
tiveness of the prior distribution. Alternatively, using the HASSET tool
this is done by weighting the informativeness of the prior distribution
in calculating the posterior distribution relative to the data or likelihood
function (Sobradelo et al., 2013).

One approach to estimate values for the model parameters is to use
observations froma group of volcanoes. However, there aremany issues
when using analogue datasets to calculate point values for the model
parameters based on the average rate of an event and measures of
the data informativeness or variance. For example, using a group of
analogous volcanoes to define point estimates for the parameters
of the prior distribution will artificially increase the precision of the
posterior distributions for each volcano as the eruptive record would
be used twice, once in the calculation of the prior distribution and
secondly in updating the prior distribution (Gelman et al., 2004).

The following hierarchical approach is designed with the introduc-
tion of an additional level to the model by defining hyperpriors that
are rearranged in terms of moments (mean average and equivalent
number of data) of the prior distribution. The introduction of hyperpriors
allows a noninformative prior distribution, where the parameters
can be updated using the relevant data from analogue volcanoes,
without the need for subjective judgement of the informativeness of
the prior distribution. Consequently, this allows the prior distribution
to be extremely flexible and range from being noninformative to ex-
tremely informative depending upon the size and similarity of eruptive
records in the group dataset. Thus, hyperpriors ensure that the α
parameters are not defined by point estimates and allow uncertainty
in the prior distribution to be quantified.

2.1. Hyperpriors

The first hyperprior (Eq.(3)) is defined for each alpha parameter or
state (j) of the Dirichlet distribution (e.g. a specific VEI magnitude).
They are chosen to be diffuse with low precision so that the data can
speak for itself. To do this a logit transformation is used to convert the
parameter space of the mean average to an unbounded continuous
scale (−∞, ∞). This allows the hyperpriors to be parameterised using
a diffuse normal distribution with low precision. The final transforma-
tion of the hyperprior is the multiplication of the logit of the mean by
(J− 1). This ensures that the hyperprior can be defined by a normal dis-
tribution centred on zero (μj = 0). This means that with no data in
the model the alpha parameters each equal one, reflecting a
noninformative uniform distribution across all the possible outcomes
(i.e. all the VEI magnitudes are equally likely).

The second hyperprior is a uniform distribution the strength of
the prior and degree of applicability of the analogue set (Eq. (4)).
The hyperprior is parameterised using α0, which is the sum of all
the alpha parameters. This reflects the equivalent number of data
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