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Understanding the underlying structure of data from volcano monitoring is essential to identify precursors to
changes in eruptive activity and to comprehend volcanic processes. However, effective analysis of longer-term
trends in these signals is challenging as volcanic data are not necessarily statistically stationary or linear, partic-
ularly those from lava dome-forming volcanoes, which are commonly characterised by pulsatory eruptive activ-
ity. Here, we use detrendedfluctuation analysis (DFA), a statistical technique previously applied to nonstationary
data, to identify long-range (slowly decaying, e.g. power-law) correlations in a number of time-series of volcano
seismicity recorded during the recent dome-forming eruptions of Volcán de Colima, Mexico, and Soufrière Hills
Volcano,Montserrat. For all the time-series analysed, correlation strength varies through time and/or on different
timescales; in some cases, this variation is periodic, seasonal, and/or related to activity. These resultsmay provide
new insights into eruptive processes and possibly further constrain the generation mechanisms of a number of
the volcano-seismic event classes analysed. Furthermore, the correlation properties of real-time seismic mea-
surements are shown (retrospectively) to contain information valuable to real-time volcano monitoring that is
not identifiable by conventional analysis techniques. This study therefore demonstrates that long-range correla-
tion analysis may be useful for extracting additional information frommonitoring data at dome-forming or sim-
ilar volcanoes.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Long-lived lava dome-forming eruptions typically comprise non-
linear episodes of extrusive and explosive activity; the eruptive style
can switch rapidly, compounding the challenge of modelling and fore-
casting such eruptions (e.g., Wadge et al., in press). Shifts in activity
may be accompanied by significant changes in hazard, as exemplified
by recent eruptions of Soufrière Hills Volcano, Montserrat (e.g., in
1997: Voight et al., 1999) and Merapi, Indonesia (e.g., in 2010: Surono
et al., 2012). In order to improve resilience to hazards in long-lived

dome-forming eruptions, we need to develop better tools to anticipate
these changes.

Analysing the signals (whether, for example, seismic, geodetic, or
gas-chemical) from observation of complex eruptive behaviour often
requires a statistical approach (Mader, 2006; Carniel et al., 2008).
Time-series of eruption parameters and monitoring data have been
analysed by a wide variety of statistical methods, as summarised in
the supplementary table. However, in order to apply the majority of
these techniques, one must assume that the data reflect a stochastic
process and have at least weak (second-order) stationarity, defined as
having time-invariant mean and variance, and autocovariance that is
only dependent upon the lag time (Nason, 2006). The application of sta-
tionarymodels is often justified, as theymake fewer assumptions about
the data or volcanic behaviour, and so are more robust (an incorrect
non-stationary model will result in greater bias: Marzocchi and
Bebbington, 2012). However, no information about temporal variations
in activity are sought or incorporated in using a stationary model
(Marzocchi and Bebbington, 2012), and so such models are not
appropriate when analysing the temporal evolution of activity at
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volcanoes that show regime changes, periodic behaviour, or trends,
which includes many dome-forming systems (Bebbington, 2010).

One group of statistical methods that can inform both forecasting
and our understanding of volcanic processes are those that quantify
persistence. Persistent (or correlated) behaviour, where similar values
are clustered in time, may be one indicator of ‘memory’ in a system,
when the system state at one point in time influences future conditions
or events. Case studies of such behaviour by volcanic systems are
described by Carniel et al. (2008): for example, Jaquet et al. (2006)
use variograms to quantify memory within repose interval and ampli-
tude time-series of a month-long sequence of Vulcanian explosions at
Soufrière Hills Volcano, Montserrat. This memory has been attributed
to decompression of ascending magma, from which magma ascent
rates and conduit geometry could be quantitatively constrained, and
later events forecast from the correlations between earlier sequential
eruptions (Jaquet et al., 2006). In spite of this potential, similar correla-
tions on longer (monthly to multi-annual) timescales have rarely been
investigated quantitatively. Long-range correlations (i.e., correlations
that decay slowly, such that the characteristic correlation timescale is
indefinable: Kantelhardt, 2009) are commonly exhibited by non-linear
dynamical systems far from equilibrium (Peng et al., 1995), so might
be expected of active volcanoes.

In this study, we identify such long-range correlations in volcano-
seismic time-series from two intensively monitored dome-forming
volcanoes, Volcán de Colima, Mexico, and Soufrière Hills Volcano,
Montserrat, by detrended fluctuation analysis (DFA) (Peng et al.,
1994). This fractal scaling analysismethod,whichfilters any local trends
in the time-series, has been used to quantify the correlation properties
of non-stationary data in a variety of disciplines (e.g., physiology: Peng
et al., 1995, climatology: Livina and Lenton, 2007, and economics:
Alvarez-Ramirez and Escarela-Perez, 2010). This technique has also
been applied to volcanological data: for example, the hourly variability
in geomagnetic signals recorded on Etna (Italy) was (using DFA)
found to showpersistent behaviour that varies on different length scales
and through time, with an abrupt increase in correlation strength being
associated with an eruption in October 2002 (Currenti et al., 2005a).
Multifractal DFA scaling exponents (Kantelhardt et al., 2002) of these
data were shown to be less variable after this eruption than before,
further constraining the correlation dynamics of the signal (Currenti
et al., 2005b). Similarly, DFA of the daily count of small explosions at
Popocatépetl (Mexico) identified quasi-periodic temporal variation of
the long-range correlations in this time-series, which varied in step
with changes in eruptive activity and slow-slip events at the associated
subduction zone (Alvarez-Ramirez et al., 2009, 2011). The ‘log-log’ plots
calculated in DFA (explained in Section 2) have also been used, for
example by Del Pin et al. (2008) to detect the presence of tectonic
events in segments of noise-contaminated seismic data recorded at
Teide (Tenerife, Canary Islands). Hurst rescaled range analysis (Hurst
et al., 1965), which calculates an exponent comparable to that from
DFA, has also been applied to volcanological data (see the supplementary
table), but is only appropriately calculated for stationary data.

2. Detrended fluctuation analysis (DFA)

DFA requires a time-series u(i) ofN values (where i = 1, … , N) to first
be integratedat eachpoint, k, in the series, as follows:y kð Þ ¼ ∑k

i¼1 u ið Þ−u½ �
where u is the mean of the whole dataset. y(k) is then divided into non-
overlapping boxes (time windows) of length n, and the local trend in
each box computed by a linear least-squares fit to the constituent data.
Higher-order fits may be applied to calculate this trend, but are not rou-
tinely used (Little et al., 2006). The trend is removed from each box to
leave locally detrended data, yd(k). The root-mean-square fluctua-
tion F nð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N∑

N
k¼1 yd kð Þ½ �2

q
of the detrended data is then computed,

and the whole process repeated for a range of scales of n. In this
study, F is calculated for every n-value from 4 to N/4, a range comparable
to previous applications of DFA (e.g., Currenti et al., 2005a), to give a set of

fluctuation values, F(n). A linear relationship between log[F(n)] and log[n]
indicates self-similarity (scaling). The gradient of this line (calculated by
least-squares regression) is the scaling exponent (or self-similarity
parameter),∝ (Peng et al., 1995). Changes in∝with increasing n reflect
different scaling properties on different timescales; we identify any break
points in the gradient of the log[F(n)] vs log[n] plots by inspection
(although these could be determined by other means, such as change
point analysis (cf. Mulargia et al., 1987)). We calculate ∝ using the
computationally efficient ‘FastDFA’ algorithm (Little et al., 2006), which
follows the original formulation of DFA (Peng et al., 1994, 1995)
summarised above.

In a subsample of a time-series where each value is not correlatedwith
any previous values (e.g., white noise), ∝ ≅ 0.5. Values in the range
0.5 b ∝ b 1 indicate long-range power-law correlation (i.e., persistence),
such that a large value (relative to the mean) is more likely to be
followed by large values, and vice versa. In contrast, 0 b ∝ b 0.5
signifies anti-persistence, where large and small signal values are
more likely to alternate. Strongly persistent, 1/f-like (‘pink’) noise
would have a value of ∝ ≅ 1. When ∝ N1, strong correlations exist,
but are not of a power-law form; ∝ ≅ 1.5 would result from
Brownian (‘red’) noise, i.e. random walk-like fluctuations in the
signal through time. Thus, ∝ may be considered a measure of time-
series ‘roughness’, becoming smoother with increasing ∝ (Peng
et al., 1995). ‘Critical slowing down’ (a decreasing rate of recovery
from small perturbations of the system) prior to a sudden change in
the dynamics of a complex system (i.e., a ‘tipping point’)maybe indicated
by an increase in∝ towards∝≥1 (Livina and Lenton, 2007).

Power-law scaling can result from either long-range correlations or
fat-tailed probability distributions (Mandelbrot and Wallis, 1968).
These can be distinguished by removing any correlations in the time-
series by randomly shuffling the data: this has no effect on the distribu-
tion, so any scaling identified by DFA (i.e.∝ ≠ ~0.5) after shuffling will
be due to a fat-tailed distribution (Alvarez-Ramirez et al., 2009). DFA of
entire volcanic time-series can be informative for evaluating the general
scaling behaviour (e.g., Currenti et al., 2005a); we present the results of
such analysis as log[F(n)] vs log[n] (‘log-log’) plots, for the range of box
lengths (n-values) for which well-defined scaling (a strong linear re-
lationship between log[F(n)] and log[n]) is present.

We investigate temporal variation in∝ by DFA of overlapping sam-
ples (time ‘windows’) of the data: i.e.,∝ is calculated for a window of a
specified constant time length, run incrementally through the time-
series. Windows in which N50% of values are zero (due to a gap in
recording or absence of seismicity) are not analysed. The window size
would ideally be short to minimise lag effects, but longer windows
reduce the potential for significant finite-size effects (Ivanova and
Ausloos, 1999). The window lengths used were selected to balance
these competing factors: smaller window lengths were rejected if they
resulted in poorly-defined scaling relationships in a significant number
of windows, determined by inspection of the log-log plots of a selection
of windows, particularly those for times when the d∝/dt is compara-
tively high. The window lengths used are such that the n-values for cal-
culating each exponent are within the range that shows a well-defined
scaling relationship in DFA of the whole time-series (specified on the
log-log plots in Section 4), but do not necessarily capture the full
range of scaling in the time-series as a whole.

The suitability of DFA as an alternative to conventional fluctuation
analysis for analysing non-stationary data has been questioned by
Bryce and Sprague (2012), on the basis of the impact of bias from
finite-size effects. The principal effect is spurious curvature on log-log
plots towards the lower limit (i.e., an increasing deviation from the
expected linear trend towards the smallest n-values); this causes a
bias to the resulting scaling exponent, and implies that fine-scale
detrending (to properly address non-stationarities) in DFA can intro-
duce artefacts. However, whole-dataset DFA of each time-series
analysed in this study shows that this spurious deviation is only inter-
mittently present for these data when n b5 (i.e., it affects only a couple
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