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Variations in the spectral content of volcano seismicity related to changes in volcanic activity are commonly iden-
tified manually in spectrograms. However, long time series of monitoring data at volcano observatories require
tools to facilitate automated and rapid processing. Techniques such as self-organizing maps (SOM) and principal
component analysis (PCA) can help to quickly and automatically identify important patterns related to impending
eruptions. For the first time, we evaluate the performance of SOM and PCA on synthetic volcano seismic spectra
constructed from observations during two well-studied eruptions at Klauea Volcano, Hawai'i, that include fea-
tures observed in many volcanic settings. In particular, our objective is to test which of the techniques can best
retrieve a set of three spectral patterns that we used to compose a synthetic spectrogram. We find that, without
a priori knowledge of the given set of patterns, neither SOMnor PCA can directly recover the spectra.We thus test
hierarchical clustering, a commonly used method, to investigate whether clustering in the space of the principal
components and on the SOM, respectively, can retrieve the known patterns. Our clusteringmethod applied to the
SOM fails to detect the correct number and shape of the known input spectra. In contrast, clustering of the data
reconstructed by the first three PCA modes reproduces these patterns and their occurrence in time more consis-
tently. This result suggests that PCA in combination with hierarchical clustering is a powerful practical tool for
automated identification of characteristic patterns in volcano seismic spectra. Our results indicate that, in contrast
to PCA, common clustering algorithmsmay not be ideal to group patterns on the SOMand that it is crucial to eval-
uate the performance of these tools on a control dataset prior to their application to real data.
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1. Introduction

In volcano monitoring, scientists are faced with the task of correctly
identifying patterns of unrest critically indicative of impending of erup-
tions (e.g. Sparks et al., 2012; Carniel, 2014). A key component of volcano
monitoring is seismic activity (Sparks et al., 2012). Seismic signals on vol-
canoes can be classified in terms of their frequency content: Whereas
volcano tectonic earthquakes often have a broadband spectrum, low fre-
quency seismicity including long-period events, very long period events,
and volcanic tremor predominantly cover lower frequency ranges of
0.01–5 Hz (Fehler, 1983; Neuberg, 2000; McNutt and Nishimura, 2008;
Chouet and Matoza, 2013). Based on its distinct spectral properties, this
low frequency seismicity is commonly explained by processes involving
fluid movement: Examples include moving bubbles (Ripepe and
Gordeev, 1999; Matoza et al., 2010; Jones et al., 2012), gas accumulation
(e.g. Johnson et al., 1998; Lesage et al., 2006), resonating fluid pathways
(Chouet, 1986; Leet, 1988; Julian, 1994; Benoit and McNutt, 1997;
Neuberg et al., 2000; Hellweg, 2000; Balmforth et al., 2005), or bubble/
magma flow (Denlinger and Hoblitt, 1999; Jellinek and Bercovici, 2011;
Thomas and Neuberg, 2012; Dmitrieva et al., 2013; Lyons et al., 2013).
Each of these mechanisms imply a relationship between properties of
low frequency seismicity and volcanic activity. Indeed, approximately

80% of a global sample of volcanic tremor episodes have been shown to
precede or accompany volcanic eruptions (McNutt, 1992). For a given
volcanic setting, knowledge of typical seismicity and the corresponding
spectral patterns before, during, and after eruptions (e.g Carniel et al.,
1996; Unglert and Jellinek, 2015) is thus crucial for eruption forecasting.

A common approach to analyzing the temporal evolution of volcano
seismicity is the visual inspection of spectrograms. For example, Unglert
and Jellinek (2015) identify two characteristic phases of seismicity
that accompanied two intrusions at Klauea Volcano, Hawai'i. This kind
of analysis requires manual identification of characteristic spatio-
temporal patterns, which is practically cumbersome, inherently subjec-
tive, and informed by the experience of the analyst. For instance,
which spectral properties distinguish non-eruptive from eruptive unrest
is unclear. Consequently, to be able to objectively identify patterns and
extract key information related to imminent or active volcanism, ana-
lysts are increasingly reliant on automated algorithms (e.g., Carniel,
2014; Cortes et al., 2015).

Pattern recognition andmachine learningmethods provide a possible
solution and are used in awide range of disciplines (e.g., Kaski et al., 1998;
Oja et al., 2002; Bishop, 2006). In particular, “unsupervised” methods
imply that no a-priori knowledge of patterns is necessary, i.e. the algo-
rithm self-learns from the data (e.g. Bishop, 2006; Langer et al., 2009).
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In volcano monitoring, this feature is essential because the temporal
evolution of patterns in monitoring time series is often unknown
(e.g. Sparks et al., 2012). A good review of different, unsupervised
feature extraction methods and their application to volcano seismicity
can be found in Orozco-Alzate et al. (2012), Carniel (2014). Such studies
have used self-organizing maps (SOM) and other techniques to detect
different types of seismicity (e.g., Carniel, 1996; Langer et al., 2009;
Carniel et al., 2013b; Curilem et al., 2014), or link changes in time series
from volcano monitoring with different eruptive vents or type of erup-
tions (e.g., Esposito et al., 2008; Di Salvo et al., 2013). Several studies
first use SOM to reduce the amount of data to be analyzed, and subse-
quently apply clustering algorithms to obtain final groupings (e.g., De
Matos et al., 2006; Köhler et al., 2009; Messina and Langer, 2011;
Carniel et al., 2013b).

SOM can generate a visual representation of the similarities and dif-
ferences betweenpatterns in a dataset (e.g., Esposito et al., 2008), require
no a-priori knowledge of patterns (e.g., Murtagh andHernández-Pajares,
1995), and can thus be useful for detecting distinctive spectral character-
istics of volcanic tremor. In fields such as oceanography or meteorology,
it is common to evaluate pattern recognition techniques against each
other, against other methods, and with synthetic data (e.g., Reusch
et al., 2005; Liu et al., 2006). In seismology, different methods including
SOM have been tested against each other at individual volcanic settings
(e.g., Langer et al., 2009; Cortes et al., 2015), and SOM performance has
been tested with artificial data consisting of parameters from the time
and frequency domains (e.g., Köhler et al., 2009). However, to our knowl-
edge no studies applying SOMcombinedwith cluster analysis to volcanic
tremor evaluate the functionality of SOM in spectral space with a
synthetic dataset. Thus, the following key knowledge gaps persist:

1. The performance of SOM against more standard techniques such as
principal component analysis (PCA) has not been systematically
evaluated with synthetic datasets of spectra.

2. Appropriate benchmarking datasets closely aligned with real obser-
vations, and with known patterns and their occurrence in time do
not exist (Orozco-Alzate et al., 2012).

3. It is not clear that the features of interest (e.g., relative spectral power
at different frequencies, occurrence and evolution of various spectral
shapes in time) are captured by SOM, or hownoise affects the results.
The limitations of the method in terms of its application to volcano
seismic spectra are thus unclear.

Accordingly, in Section 2, we produce synthetic spectra on the basis
of detailed manual extraction of two characteristic spectral signatures
during eruptive periods at Klauea Volcano, Hawai'i (Unglert and
Jellinek, 2015). Specifically, we address two questions:

1. Can hierarchical clustering, a common approach to identify group-
ings in data used in previous studies of volcano seismicity, applied
to the results from PCA (Section 3) and SOM (Section 4) correctly
identify the known spectra and their occurrence/evolution in time
in a typical volcanic spectrogram?

2. Howdo the clustering results differ between the two techniques, and
what are the limitations of each of the methods and of our synthetic
dataset (Section 5)?

2. Data and preprocessing

Many methods exist for classifying volcano seismicity in both the
time and the frequency domains (e.g., Langer and Falsaperla, 2003;
Ibs-von Seht, 2008; Curilem et al., 2009). However, Castro-Cabrera
et al. (2014) found that classification utilizing entire spectra performs
better than classification utilizing sets of other temporal and spectral
parameters such as the mean amplitude or mean frequency in a given
time window. Furthermore, previous work shows that distinct spectral
shapes and transitions between them may relate to the underlying

physical processes (e.g., Aki et al., 1977; Benoit and McNutt, 1997;
Maryanto et al., 2008; Unglert and Jellinek, 2015).

To evaluatewhether SOMor PCA are suitable for automated analysis
of time varying spectral signatures, andmore accurate and efficient than
visual inspection of spectrograms, we create a synthetic dataset of
volcano seismic spectra on the basis of themajor spectral characteristics
of seismic signals fromKlauea Volcano, Hawai'i between 2007 and 2011
(Fig. 1(a); Unglert and Jellinek (2015)). During this period, two dike
intrusions and accompanying fissure eruptions in the East Rift Zone
showed a phase of discrete, seismic events near the intruding dikes
(Phase I, Figs. 1(b) and 2), followed by a phase of continuous tremor
near the summit (Phase II, Figs. 1(b) and 2) with a stronger decrease
of spectral power from low to high frequencies compared to Phase I
(Unglert and Jellinek, 2015). A prominent feature of Phase II is gliding
of spectral lines (Unglert and Jellinek, 2015). However, because the glid-
ing was expressed at different frequencies during the two intrusions,
and because it did not affect the overall character of Phase II, we do
not include gliding spectral peaks in Phase II of our synthetic dataset.
Such gradual variations in the frequencies of individual spectral peaks
are, in principle, similar to transitions over time from one phase to an-
other, which are included in our synthetic dataset. We touch upon this
subject again in Section 5.3.

The eruptive phases at Klauea and their temporal variations are not
representative of volcano seismicity in general, but they capture someof
the main features of pre- and syn-eruptive seismicity observed in
other settings such as Redoubt Volcano, (Fig. 1(c)) or Okmok Volcano,
(Fig. 1(d)), such as different spectral shapes and impulsive and emer-
gent variations of those shapes over time (e.g., Carniel et al., 1996;
Neuberg, 2000; Ruiz et al., 2006; Curilem et al., 2009; Langer et al.,
2009; Buurman et al., 2012). The particular value of our dataset is that
it enables reliable performance evaluation of SOM and PCA on well
understood data that are drawn from well-established observations.

2.1. Synthetic spectra

To create the three spectra, we choose three 5-minute windows of
continuous seismic data corresponding to the background state, Phase
I, and Phase II at station AHU from Klauea as described above (Figs. 1–
2). Station AHU is situated between the inferred locations of Phase I
and II (close to the area of dike intrusion and below the summit, respec-
tively) and showed both phases clearly and with relatively similar
strength. The data are demeaned, detrended, tapered, and Fourier trans-
formed. The resulting spectra are then smoothed and subsampled with
a 50 point moving average to obtain the trends of spectral power
(Fig. 1(a)). For the tests in this study, we limit the frequencies to
0.5–10 Hz unless otherwise indicated. The lower frequency limit is
dictated by contamination of volcanic signals with low frequency
(≤0.3 Hz) seismic noise from the ocean (McNamara and Buland, 2004;
Bromirski et al., 2005), and by decreasing sensitivity of short period in-
struments below 1 Hz (Mark Product L-4 seismometers with a natural
frequency of 1 Hz). The upper limit is chosen to include the frequency
range where the (non-normalized) spectra differ the most
(Figs. 1(b) and 2(a)). Different frequency bounds will be discussed in
Section 5.3.

The three spectra in Fig. 2(a) capture the main differences between
the three time periods: The background state has a relatively monoton-
ic, steep decay of spectral power between 0.5 and 4 Hz, and flattens
slightly at higher frequencies; Phase I and Phase II have increasing spec-
tral power between 0.5 and 1 Hz (stronger for Phase II), and lower, ap-
proximately linear slopes from 1 Hz towards higher frequencies
(compared to the background; Unglert and Jellinek, 2015). These fea-
tures suggest differences in the underlying physical processes (Unglert
and Jellinek, 2015). The stronger spectral power at low frequencies dur-
ing Phase II compared to the background is, for example, explained by
bubble cloud oscillations in a magma reservoir below Klauea's summit,
whereas the relatively even, strong contributions at all frequencies
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