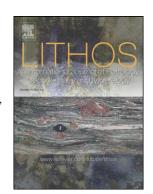
Accepted Manuscript

Melt production, redistribution and accumulation in mid-crustal source rocks, with implications for crustal-scale melt transfer

Johann F.A. Diener, Richard W. White, Timothy J.M. Hudson


PII: S0024-4937(14)00153-4

DOI: doi: 10.1016/j.lithos.2014.04.021

Reference: LITHOS 3270

To appear in: LITHOS

Received date: 17 October 2013 Revised date: 14 April 2014 Accepted date: 17 April 2014

Please cite this article as: Diener, Johann F.A., White, Richard W., Hudson, Timothy J.M., Melt production, redistribution and accumulation in mid-crustal source rocks, with implications for crustal-scale melt transfer, *LITHOS* (2014), doi: 10.1016/j.lithos.2014.04.021

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Melt production, redistribution and accumulation in mid-crustal source rocks, with implications for crustal-scale melt transfer

Johann F.A. Diener^{a,*}, Richard W. White^b, Timothy J.M. Hudson^a

^aDepartment of Geological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa

^bEarth System Science Research Centre, Institute of Geoscience, University of Mainz, D-55099 Mainz, Germany

Abstract

Ascent of granitic melt initiates under suprasolidus conditions in the mid- to lower crust before continuing through subsolidus rocks to higher crustal levels. Whereas migration of melt in suprasolidus rocks can occur in pervasive net-like structures and involve relatively small melt volumes, ascent through the subsolidus crust requires more focused, dyke-like structures and larger volumes to prevent freezing. Migmatites in the Aus granulite terrain, southern Namibia, preserve evidence that large-scale melt redistribution and accumulation occurred in the near-source region under suprasolidus conditions. Melt that was mainly produced in metapelitic rocks utilised pervasive small-scale leucosome networks to migrate to areas surrounding pre-tectonic granite sheets. These areas are dominated by metapsammitic rocks, and abundant and voluminous leucogranite sheets attest to melt accumulation and residence occurring over a protracted period while the area was undergoing anatexis. However, the leucogranites have an anhydrous mineralogy and the surrounding rocks only preserve evidence for limited, high-temperature retrogression, consistent with substantial melt loss from the accumulation structures. We speculate that melt batches leaving the accumulation sites are likely to have been large, allowing for substantially more efficient ascent through subsolidus crust. Our results suggest that a degree of near-source melt accumulation is likely to occur during the early stages of melt migration, and that this can significantly enhance the effectiveness of subsequent melt ascent.

Keywords: melt accumulation, Namaqua metamorphic complex, pervasive migration, melt ascent

Email address: johann.diener@uct.ac.za (Johann F.A. Diener)

^{*}Corresponding author

Download English Version:

https://daneshyari.com/en/article/6440804

Download Persian Version:

https://daneshyari.com/article/6440804

<u>Daneshyari.com</u>