Contents lists available at ScienceDirect

Earth-Science Reviews

journal homepage: www.elsevier.com/locate/earscirev

Invited review

The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments

Matthias Rothe ^{a,b,*}, Andreas Kleeberg ^{a,1}, Michael Hupfer ^a

^a Department of Chemical Analytics and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
^b Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany

ARTICLE INFO

Article history: Received 30 November 2015 Received in revised form 12 April 2016 Accepted 20 April 2016 Available online 26 April 2016

Keywords: Aquatic sediment Authigenic mineral formation Iron Phosphorus Sulphur Vivianite

ABSTRACT

In this article, we review the nature, occurrence and environmental relevance of the authigenic ferrous iron phosphate mineral vivianite ($Fe_3(PO_4)_2 \cdot 8H_2O$) in waterlogged soils and aquatic sediments. We critically discuss existing work from freshwater and marine systems, laboratory studies and microbial batch culture experiments aiming to deduce common characteristics of the mineral's occurrence, and the processes governing its formation. Vivianite regularly occurs in close association with organic remains in iron-rich sediments. Simultaneously, it is a biogenic mineral product of metal reducing bacteria. These findings suggest that vivianite nucleation in natural systems is directed by the activity of such bacteria and crystal growth is particularly favoured within protected microzones. Taking into account recent findings from coastal marine sediments where vivianite authigenesis has been shown to be coupled to the anaerobic oxidation of methane, small-scale microbially mediated reactions appear to be crucial for the formation of vivianite. Small-scale heterogeneity within the sediment matrix may also explain why saturation calculations based upon bulk pore water constitutions often fail to accurately predict the occurrence of the mineral. Vivianite is not restricted to a specific trophic state of a system. The mineral forms in oligotrophic- as well as in eutrophic waters. However, depending on the iron inventory, the production, supply and degradation of organic matter determine the relative contribution of iron sulphide formation to the iron pool, and the concentration of inorganic phosphate and Fe²⁺ in pore waters. Thus, vivianite authigenesis is also governed by bulk chemical conditions such as the rate of sulphide formation relative to that of Fe²⁺ production. This situation allows stimulation of vivianite formation by iron supplementation aimed at restoring eutrophic lakes. Recent results from coastal marine sediments suggest that vivianite authigenesis is of significance for P burial in the marine realm. Vivianite authigenesis is likely important at the global scale, but has so far largely been ignored.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents

1.	Introduction	52				
2.	Vivianite characteristics and appearance	53				
3.	Methods of vivianite identification	54				
	3.1. Thermodynamic calculations: potentials and limitations	55				
	3.2. Sequential phosphorus extraction procedures	55				
4.	Vivianite occurrence and formation mechanisms	56				
5.	The role of microorganisms in vivianite formation	58				
6.	Ecological role of vivianite in aquatic systems	58				
7.	Promoting vivianite formation as a remediation technique to improve water quality	61				
8.	Summary and perspectives	61				
Ack	Acknowledgements					
Refe	References					

* Corresponding author.

¹ Now at: State Laboratory Berlin-Brandenburg, Kleinmachnow, Germany.

http://dx.doi.org/10.1016/j.earscirev.2016.04.008

0012-8252/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Vivianite is the most common stable iron phosphate mineral forming in sedimentary environments (Nriagu, 1972; Emerson, 1976;

Berner, 1981a). This mineral occurs worldwide in various aquatic systems, such as freshwater and marine sediments, and in terrestrial systems such as waterlogged soils, bogs, hydrothermal deposits and archaeological settings as well as in wastewater sludges (Table 1).

Table 1

Compilation of the natural occurrence of vivianite (viv) in aquatic and terrestrial systems worldwide, drawn from the scientific literature between 1970 and 2015.

System	Location	Identification	Remarks	Reference
Sediment of freshwater lakes	Lake Åsrum, Norway	Ву еуе	Viv not present in the underlying lagunal and marine sediments	Rosenqvist (1970)
Junes	Great Lakes, USA	By eye, microscopy	Viv not directly associated with organic remains although these materials were abundant	Nriagu and Dell (1974)
	Lake Ur, Germany Lago Maggiore Italy	By eye By eye SEM XRD	Meromictic bog lake Viv denth layer not in accordance with	Tessenow (1974) Nembrini et al. (1983)
	Toolik Lako Alaska	Mössbauer spectroscopy	saturation calculations	Cornwell (1087)
	10011K Lake, Alaska	ву еуе, зем-ерх	occur at the sediment surface but only below the oxic-anoxic interface	Cornwell (1987)
	Narrow Lake, Canada	By eye, XRD	Viv only present in the deep southern basin where the molar S:Fe ratio was higher than in the shallow northern basin	Manning et al. (1991)
	Lake Biwa, Japan	By eye, XRD, X-ray fluorescence	Manganoan viv, high sulphide concentration	Nakano (1992), Murphy et al. (2001)
	Lake Bussjösjön, Sweden	By eye	Present in preindustrial non-sulphidic sediments	Olsson et al. (1997)
	Baptiste Lake, Canada	XRD, Mössbauer	Influence of groundwater rich in Fe ²⁺ and phosphate	Manning et al. (1999)
	Lake Baikal, Russia	By eye, SEM-EDX, XRD, IR spectroscopy	Manganoan viv, viv grains contain inclusions of plagioclase and pyrite, formation in microenvironments	Fagel et al. (2005), Sapota et al. (2006), Minvuk et al. (2013)
	Laguna Potrok Aike,	By eye, SEM-EDX, XRD	Indirect signs of microbially mediated viv	Nuttin et al. (2013), Vuillemin et al. (2013),
	Lake Pavin, France	XRD	Viv detected on sinking particles, role of polyphosphates in precipitation of reduced	Cosmidis et al. (2013)
	Lake Groß-Glienicke, Germany	By eye, SEM-EDX, XRD	Fe(II) phosphates Viv formation triggered by Fe supplement	Rothe et al. (2014)
	Lake Ørn, Denmark	SEM-EDX, XRD	Identification by XRD on bulk sediment	O'Connell et al. (2015)
Sediment of rivers	Potomac River, USA	By eye, SEM-EDX	Major control on the occurrence of viv is the presence or absence of amorphous Fe(III) oxi-hydroxides	Hearn et al. (1983)
	Mississippi River, USA	By eye, X-radiography	Viv consists of radial aggregates of 1–3 mm in diameter and occurs together with other diagenetic minerals (siderite, pyrite, calcite,	Bailey et al. (1998)
	Havel River, Germany	By eye, SEM, XRD	dolomite, hematite) Occurrence of viv associated with a decreased sulfidization in response to a lower primary	Rothe et al. (2015)
Sediment of canals	Old Birmingham Mainline Canal LIK	SEM-EDX	Viv coexisted with biogenic structures and pyrite framboids	Dodd et al. (2003)
	Salford Quays, UK	SEM-EDX, XRD, Raman spectroscopy, XANES, EXAFS	Highly contaminated, organic-rich canal bed sediments	Taylor and Boult (2007); Taylor et al. (2008)
Waterlogged soils	Organic soil, Denmark	XRD, Mössbauer spectroscopy	Viv neoformation in response to Fe(III) reduction following anoxic soil incubation	Heiberg et al. (2012)
	Meadow soil, Denmark	By eye, SEM-EDX, XRD, Mössbauer spectroscopy	Dissolution precipitation experiments, viv shows slow precipitation kinetics	Walpersdorf et al. (2013)
Bogs	Paddy field soil, Japan Swamps, Auckland Area, Now Zoaland	By eye, SEM-EDX, XRD By eye, XRD	Viv attached to aged rice roots XRD detection successful after the minerals	Nanzyo et al. (2010, 2013) Rodgers (1977)
	River bog, Denmark	XRD	Viv coexisted with siderite, calcite and	Postma (1981)
Marine sediments	Amazon Fan, Brazil	By eye, SEM-EDX	Viv occurs below the depth of total sulphate depletion	Burns (1997)
	Yung-An Ridge, South China Sea	SEM-EDX, XRD, Raman spectroscopy, IR spectroscopy	Magnesium-rich viv, viv formation influenced by methane induced sulfidization	Hsu et al. (2014)
	Bothnian Sea, Baltic Sea	SEM-EDX, XRD, µXRF, XANES	Anaerobic oxidation of methane triggers viv formation	Egger et al. (2015a)
Other	Wastewater sludge	SEM-EDX, XRD, Mössbauer spectroscopy	P removal through Fe reduction-induced P precipitation	Frossard et al. (1997), Zhang (2012)
	Hydrothermal deposits	By eye	Viv retains its deep colour even where intensively altered	Robertson (1982), Rodgers et al. (1993)
	Archaeological settings	By eye	Viv present on the surface of bones and other human remains, important function of microorganisms proposed	Tessadri (2000), Thali et al. (2011), McGowan & Prangnell (2006, and references therein)

EXAFS: extended X-ray absorption fine structure; IR spectroscopy: infrared spectroscopy; µXRF: micro X-ray fluorescence; SEM-EDX: scanning elecetron microscopy with energy dispersive X-ray spectroscopy; XANES: X-ray absorption near edge structure; XRD: powder X-ray diffraction.

Download English Version:

https://daneshyari.com/en/article/6442830

Download Persian Version:

https://daneshyari.com/article/6442830

Daneshyari.com