Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/earscirev

New insight into global blue carbon estimation under human activity in land-sea interaction area: A case study of China

Yang Gao^a, Guirui Yu^{a,*}, Tiantian Yang^b, Yanlong Jia^a, Nianpeng He^a, Jie Zhuang^c

^a Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PRChina

^b Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, United States

^c Department of Biosystems Engineering and Soil Science, Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN 37996, United States

ARTICLE INFO

Article history: Received 22 October 2015 Received in revised form 24 February 2016 Accepted 12 May 2016 Available online 14 May 2016

Keywords: Coastal ecosystem Blue carbon Carbon sequestration Human activity Climate change

ABSTRACT

The C sequestration in coastal blue carbon (C_b) ecosystems, including mangroves, seagrasses and saltmarshes, was discovered to be useful in mitigating the increasing trend of carbon dioxide (CO_2) emission due to climate change. In this study, we systematically estimate traditional C_b ecosystem distribution and the associated C_b sequestration rate, and then further quantify the C_b sinks fishery contribution to C_b ecosystem due to human activity in coastal ecosystem. The results show that the global C_b ecosystem is able to store 10.8 PgC, wherein biomass and soil are able to store 2.13 and 8.68 PgC, respectively. In China, the C_b pools are 162 TgC in mangroves, 67 TgC in saltmarshes and 75 TgC in seagrass. The human activity induced global C_b sink fishery on C_b ecosystem is about 26.58–37.6 TgC yr⁻¹, accounting for 30.7%–43.4% of the world's traditional C_b sequestration ecosystem. The global C_b sequestration potential reaches up to 86.59 Tg yr⁻¹, while China can explain 1.70% of the world's total C_b sequestration. However, in China, the C_b sequestration due to human activity reaches up to 6.32–7.89 TgC yr⁻¹, accounting for 20.9%–23.7% of global C_b sink fishery. Therefore, it is very important to build the C_b sink fisheries measure and monitor system to scientifically valuate C_b sink fisheries and associated development potential.

Contents

1.	Introduction
2.	Methods
3.	Global C _b sink estimation in coastal ecosystem
	3.1. Global C _b ecosystem geographic distribution
	3.2. C _b sequestration mechanism
	3.3. Global C_b density in coastal ecosystem
	3.4. Global estimation of C _b storage and sequestration potential
4.	C_b sink fishery
	4.1. C _b sink fishery concept
	4.2. Global estimation of C_b sink fishery
5.	C_b sink management and benefit
	5.1. C _b ecological service
	5.2. C_b sink estimation and management
	5.3. Implication for China
Ack	nowledgements
Refe	erences

* Corresponding author.

E-mail address: yugr@igsnrr.ac.cn (G. Yu).

1. Introduction

Traditionally, the blue carbon (C_b) is defined as the C captured by living organisms in oceans that stored in the form of sediments from mangroves, saltmarshes and seagrasses (Siikamäki et al., 2012), The costal vegetated habitats, in particular mangroves, saltmarshes and seagrasses only cover less than 2% of the area of the world's oceans, but sequester at least 50% of the C stored in ocean sediments (Nellemann et al., 2009; IWGCBC, 2011). Therefore, sustaining C_b sinks in coastal ecosystems will be crucial for making climate change adaptation strategies and reducing vulnerability of human coastal communities in the future (Nellemann et al., 2009; Laffoley and Grimsditch, 2009). The land-sea interaction area in coastal ecosystem is commonly termed "gray zone" in the global C cycle. The available findings and reports on C_b ecosystem are important for evaluating global earth surface C storage (Sifleet et al., 2011).

C_b biosequestration in mangroves, saltmarshes and seagrasses can capture atmospheric CO₂ and store it in plant biomass and sediments as C_b. C_b is considered as one of the most effective methods for longterm C storage (Duarte et al., 2013; Macreadie et al., 2014). C_b sink is determined by the processes and mechanisms that marine organisms absorb and use atmospheric CO₂ (Arrigo, 2004; Gonzalez et al., 2010). Marine organisms are responsible for 55% of global photosynthetic C fixation each year (Bowler et al., 2009; Bauer et al., 2013), but compared to terrestrial plants, phytoplanktonic marine organism biomass is only 0.05% of terrestrial plant biomass. The coastal ecosystem transports the fixed C_b to two adjacent ecosystems, including coastal ecosystems and the open oceans, as well as to the seabed buried in sediments in the form of humus. (Duarte and Cebrian, 1996; Duarte et al., 2005; Bouillon et al., 2008; Heck et al., 2008; Bauer et al., 2013). Once C_b is transformed into humus, it is temporarily removed from the C cycle. Donato et al. (2011) recently estimated that coastal mangroves could store up to 20 PgC, which was equivalent to roughly 2.5 times current annual greenhouse gas emissions globally. This is a striking observation, especially given the fact that mangroves only cover about 0.7% of the tropical forest area worldwide.

Recently, it has been reported that human activities have greatly modified the exchange of C and nutrients between terrestrial and coastal zones (Regnier et al., 2013). Atwood et al. (2015) further revealed that predators were helpful for biosequestration and greatly changed the coastal ecosystem C cycling based on their indirect effects on plant or microbial community composition and structure (Wilmers et al., 2012; Atwood et al., 2014). Therefore, we believe that the human activities, such as C_b fishery and aquaculture in coastal ecosystem, are able to alter food chain or increase the population of predators, and consequently enhance the C_b biosequestration in coastal ecosystems. The aims of this study are to (1) summarize the current knowledge on C_b ecosystem distribution and C_b density; (2) comprehensively evaluate global C_b sequestration potential and storage; (3) systematically estimate the contribution of C_b sink fishery to coastal C_b sequestration, and (4) provide recommendations for future C_b management strategies.

2. Methods

In this study, in order to make sure the statistical data are uniform and unbiased, the basic statistical data on the distribution and C_b sequestration of global mangroves, seagrasses and salt marshes were collected from the Food and Agriculture Organization (FAO) and International Working Group on Coastal "Blue Carbon" (IWGCBC) reports. The data on global fishery and aquaculture development were retrieved from the World Review of Fisheries and Aquaculture. The data related to C_b ecosystem and fishery and aquaculture in China were extracted from China Marine Statistical Yearbook (CMSY) and China Fishery Statistical Yearbook (CFSY). All parameters used in the study are from published journal papers, conferences papers and government reports. The global C_b storage and C_b sequestration are estimated by the following equations and the detailed description of related parameter values is given in Table 1.

The coastal C_b sequestrations are calculated using Eq. (1):

$$C_b = C_{rate} \times A_v \tag{1}$$

where C_{rate} is the C_b sequestration rate of a certain kind of vegetation; A_v is the distributing area for the corresponding C_b ecosystem.

The economic algae, shellfish and fishing C sequestration are calculated using Eq. (2):

$$C_{aquaculture} = C_a \times X_a \tag{2}$$

where X is the annual mean production; C_a is the C sequestration rate.

3. Global C_b sink estimation in coastal ecosystem

3.1. Global C_b ecosystem geographic distribution

Mangroves, seagrasses and salt marshes in coastal ecosystem are three major C_b pools, which spread across the globe. At least one of the three can be found in almost every country with a coastline (Giri et al., 2010; Pendleton et al., 2012; Siikamäki et al., 2012) (Fig. 1). Seagrass meadows often lie adjacent to mangroves and saltmarshes, which are subject to similar land-use pressures as mangroves though their much broader and different geographic range (Duarte and Chiscano, 1999; Hemminga and Duarte, 2000). Therefore, the estimation of areal coverage of saltmarshes and seagrass exist considerable uncertainty (Siikamäki et al., 2012). Barbier et al. (2011) estimated that the C_b ecosystem on mangroves, seagrasses and saltmarshes covered approximately $4.9\times 10^5~\text{km}^2$ worldwide. Mangrove forests are coastal wetland forests that cover up to 75% of the tropical and subtropical shorelines of the world, so there are 111 countries with mangroves in the world (Siikamäki et al., 2012). Giri et al. (2010) reported that the total area of mangroves worldwide was 1.39×10^5 km², wherein Southeast Asia had obvious the largest mangrove area (66,687 km²), which accounted for almost half of the total global mangroves area.

As Fig. 2 shows, we collect geographic data on the main mangroves and seagrass distribution in the top 20 countries in the world (Giri et al., 2011; Siikamäki et al., 2012). We find out that the main mangroves are concentrated on both sides of the equator and the total area for mangroves area in these 20 countries accounts for over 80% of the total area worldwide. The area of mangroves in Indonesia alone accounts for 2.7×10^4 km² or 19.5% of the world's total mangroves area. Followed by Indonesia, the next four countries with large mangroves area are Brazil, Australia, Mexico and Nigeria, which belong to other continents (Fig.2a). As Fig.2b shows, seagrass ecosystems are broadly distributed worldwide. The total area of seagrass is roughly estimated at 3.19×10^5 km². Meanwhile, there is an interesting phenomenon that mangroves mostly concentrate in developing countries around the equator, but seagrasses concentrate in both developing and developed countries (Giri et al., 2007). Southeast Asia has the largest area of seagrass. The total seagrass covered area in Southeast Asia is 8.13×10^4 km², which accounts for 25.4% of the world's seagrass (Fig.2b). The top four seagrass covered countries are Australia, Saudi Arabia, United States and Indonesia. The total area of seagrass in Australia is $4.11\times10^4~\text{km}^2$, which accounts for 12.9% of the world's total seagrass area. The salt marshes are mostly located in low temperate and high latitude area. In tropical areas, salt marshes would give way to mangroves (Allen and Pye, 1992). Chmura et al. (2003) roughly estimated that salt marshes covered 5.1×10^4 km² worldwide, which was in agreement with the estimation from Pendleton et al. (2012).

In China, most of mangroves distribute at Guangdong, Guangxi, Hainan and Fujian Province, and the mangroves covered areas are 323, 180, 135 and 134 km², respectively (CMSY, 2011). There are about 22 seagrass species distributed along China's coastal regions, which belong Download English Version:

https://daneshyari.com/en/article/6442837

Download Persian Version:

https://daneshyari.com/article/6442837

Daneshyari.com