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Iron-bearing minerals are sensitive to a wide spectrum of natural processes and thus carry important environ-
mental information. In environmentalmagnetism, various techniques are used to identify and quantifymagnetic
mineral assemblages in natural materials, with the aim of drawing inferences concerning past environments and
environmental change. Natural materials typically contain a number of magnetic mineral subpopulations with
different origins that can reflect multiple environmental processes. Thus, it is essential that the information car-
ried by such mixed magnetic mineral assemblages can be quantified in terms of environmentally meaningful
component parts. Magnetic unmixing techniques are designed to perform this quantification and can, thus, act
as a cornerstone for interpreting complex environmental magnetic data. In this review, numerical strategies
for unmixing magnetic mineral assemblages are discussed and are illustratedwith examples. Emphasis is placed
on the extent of available a priori knowledge concerning a magnetic mineral mixture and the ways that such
information can be incorporated into a meaningful unmixing model.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Naturally occurring assemblages of fine magnetic particles in rocks
and sediments carry environmental information spanning a wide
spectrum of temporal and spatial scales. At the shortest time scales,
magnetic particles can record wildfire burning of landscapes (Gedye
et al., 2006; Blake et al., 2006). Magnetic particles in sediments and
soils can record anthropogenic pollution in a local catchment over
periods of years and decades (Shankar et al., 1994; Hanesch and
Scholger, 2002; Blundell et al., 2009). Spanning centuries andmillennia,
magnetic particles have recorded anthropogenic processes and provide
an essential archeological tool (Oldfield et al., 1985; Dalan and Banerjee,
1998; Church et al., 2007). Moving beyond the last ten thousand years,
the waxing and waning of the ices ages is recorded by sedimentary
magnetic particles on continents (Heller and Liu, 1986; Maher and
Thompson, 1992; Guo et al., 2002; Ding et al., 2005) and in the oceans
(Bloemendal and deMenocal, 1989; Larrasoaña et al., 2003; Roberts
et al., 2011b), which can help to understand Earth's climate system.
Magnetic particles in ancient sediments provide key insights into envi-
ronmental change driven by major catastrophic events (Ellwood et al.,
2003; Chang et al., 2012; Font and Abrajevitch, 2014), and periods of
time characterized by extreme global warming (Kopp et al., 2007;
Larrasoaña et al., 2012).

A given geological materialmay have been influenced by a variety of
natural processes originating from the atmosphere, biosphere, hydro-
sphere, and cryosphere, which in concert produce a mixed magnetic
mineral assemblage that carries convolved information concerning a
number of environmental mechanisms (Evans and Heller, 2003). Envi-
ronmental magnetism aims to identify and quantify such natural
processes based on the composition of magnetic mineral assemblages.
Thus, separation of bulk rock magnetic signals into meaningful parts is
an essential task. This has led rock and environmental magnetists to
develop and adapt experimental and data processing techniques to
“unmix” complex magnetic mineral assemblages into environmentally
informative parts. A wide variety of tools is now available with which
to decomposemixed signals to obtain information pertinent to environ-
mental investigations.

The primary route to unmixing magnetic assemblages is via a
sequence of well-designed experiments, with each step targeting a
different part of the system. In mixed magnetic particle assemblages
the results of such experiments can be ambiguous and detailed analysis
frameworks have been developed in conjunction with visualization
tools to facilitate interpretation. The ideas underlying these techniques
have been reviewed recently with a range of illustrative examples (Liu
et al., 2012). This paper focuses on techniques designed to unmix rock
and environmental magnetic data numerically, which enables estima-
tion of both the composition and abundance of environmentally
relevant components. Numerical unmixing is a challenging, often ill-
posed, problem that necessarily relies on a statistical foundation,
while being required to respect known magnetic phenomena. Over
the past thirty years numerical unmixing analysis of rock magnetic
data has taken a variety of forms, but has focused on a single goal; to
mathematically partition experimental data in such a manner that the
individual subpopulations that contribute to a mixed assemblage can
be identified, characterized, and quantified.

In this paper, ideas underlying different families of numerical
unmixing techniques will be discussed with illustrative examples. In
Section 2, a general overview is provided of the key concepts that
underpin magnetic unmixing. Different forms of numerical unmixing
models, the assumptions involved, and the level of a priori knowledge
they require are discussed in subsequent sections.

2. Magnetic mineral mixtures

The complexity of natural systems means that most materials of
geological and environmental interest will contain a variety ofmagnetic

minerals with different grain sizes and concentrations. The aim of mag-
netic unmixing is to identify these magnetic mineral “subpopulations”
or “components” on the basis of their rock magnetic properties and,
where possible, to characterize them in detail and quantify their abun-
dance. In its simplest form the combined behavior of a collection of
components can be represented by the linear mixing model:

X ¼
Xc
j¼1

AjS j; ð1Þ

where X is a bulk sample property resulting from the combined behav-
ior of c components. Specifically, Aj is the abundance of the jth mixture
component and Sj is the corresponding property for that component.
When dealing with experimental data sets, it is necessary to extend
the linear mixing model to include an error term (e) to account for
differences between the model and the data:

X ¼
Xc
j¼1

AjS j þ e; ð2Þ

which may arise from measurement noise, shortcomings of the model,
etc. In Eq. (2), X represents a single property, for example, the saturation
magnetization, but the model can be extended easily to represent
collections of parameters or spectral data composed of a sequence of
measurements (e.g., hysteresis loops or remanence acquisition curves),
with X becoming a vector:

Xi ¼
Xc
j¼1

AjSi j þ ei; ð3Þ

where i represents the ith parameter in the sequence. In order to make
Eqs. (2) and (3) physically meaningful it is typically necessary to
apply constraints to A and S. For example, subpopulation abundances
in a mixture should be non-negative and in the case of relative
abundances will sum to a constant (normally 1):

Non‐negativity Aj≥0; j ¼ 1;…; c

Sum‐to‐one
Xc

j¼1
Aj ¼ 1:

ð4Þ

Appropriate constraints on S should ensure that known magnetic
phenomena are respected. This can be as simple as ensuring that pa-
rameters of interest lie within physically realistic intervals (for example,
saturation magnetization, Ms, must be non-negative) or as complex as
imposing shape constraints on the form of hysteresis loops (Jackson
and Solheid, 2010; Heslop and Roberts, 2012a).

Depending on the unmixing problem at hand, an investigator may
constrain estimates of either A or S, or potentially A and S together.
Although the structure of a linear mixing model is conceptually simple,
any numerical approach to solving Eqs. (2) and (3) will depend on the
specific problem and any simplifying assumptions made. In the case of
mixed magnetic mineral assemblages, special consideration must be
given to how the abundances of the mixture subpopulations can be
represented and the appropriateness of a linear model.

2.1. Defining subpopulation abundances

A key aim ofmagnetic unmixing is to estimate the abundances of the
subpopulations that make up a mixed magnetic mineral assemblage.
There is, however, a level of ambiguity associated with the abundance
term in the linear mixing model (Eqs. (2) and (3)) that is specific
to magnetic mineral mixtures. To give an experimental example, the
S-ratio (Stober and Thompson, 1977; Bloemendal et al., 1992) is an
estimate of the relative abundance of high coercivity (e.g., hematite
and goethite) and low coercivity (e.g., magnetite) minerals in a bulk
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