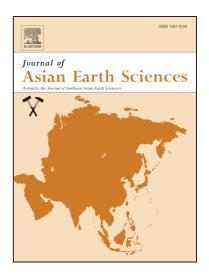
Accepted Manuscript

Estimation of Source Parameters and Scaling Relations for Moderate Size Earthquakes in North-West Himalaya

Vikas Kumar, Dinesh Kumar, Sumer Chopra


PII: S1367-9120(16)30236-X

DOI: http://dx.doi.org/10.1016/j.jseaes.2016.07.023

Reference: JAES 2768

To appear in: Journal of Asian Earth Sciences

Received Date: 12 April 2016 Revised Date: 8 July 2016 Accepted Date: 20 July 2016

Please cite this article as: Kumar, V., Kumar, D., Chopra, S., Estimation of Source Parameters and Scaling Relations for Moderate Size Earthquakes in North-West Himalaya, *Journal of Asian Earth Sciences* (2016), doi: http://dx.doi.org/10.1016/j.jseaes.2016.07.023

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Estimation of Source Parameters and Scaling Relations for Moderate Size Earthquakes in North-West Himalaya

Vikas Kumar¹*, Dinesh Kumar² and Sumer Chopra³

¹ National Center for Seismology, Ministry of Earth Sciences, New Delhi,

² Kurukshetra University, Kurukshetra,

³ Institute of Seismological Research, Gandhinagar

*Corresponding author: Email: vickypu05@gmail.com

Abstract

The scaling relation and self similarity of earthquake process have been investigated by estimating the source parameters of 34 moderate size earthquakes (m_b 3.4-5.8) occurred in the NW Himalaya. The spectral analysis of body waves of 217 accelerograms recorded at 48 sites have been carried out using in the present analysis. The Brune's ω^{-2} model has been adopted for this purpose. The average ratio of the P-wave corner frequency, fc(P), to the S-wave corner frequency, fc(S), has been found to be 1.39 with fc(P) > fc(S) for 90% of the events analyzed here. This implies the shift in the corner frequency in agreement with many other similar studies done for different regions. The static stress drop values for all the events analyzed here lie in the range 10 - 100 bars average stress drop value of the order of 43 ± 19 bars for the region. This suggests the likely estimate of the dynamic stress drop, which is 2-3 times the static stress drop, is in the range of about 80-120 bars. This suggests the relatively high seismic hazard in the NW Himalaya as high frequency strong ground motions are governed by the stress drop.

The estimated values of stress drop do not show significant variation with seismic moment for the range $5 \times 10^{14} - 2 \times 10^{17}$ N-m. This observation along with the cube root scaling of corner frequencies suggests the self similarity of the moderate size earthquakes in the region. The scaling relation between seismic moment and corner frequency $M_o f_c^3 = 3.47 \times 10^{16} N$ –

Download English Version:

https://daneshyari.com/en/article/6443946

Download Persian Version:

https://daneshyari.com/article/6443946

<u>Daneshyari.com</u>