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a b s t r a c t

Parasitic folds are typical structures in geological multilayer folds; they are characterized by a small
wavelength and are situated within folds with larger wavelength. Parasitic folds exhibit a characteristic
asymmetry (or vergence) reflecting their structural relationship to the larger-scale fold. Here we
investigate if a pre-existing geometrical asymmetry (e.g., from sedimentary structures or folds from a
previous tectonic event) can be inherited during buckle folding to form parasitic folds with wrong
vergence. We conduct 2D finite-element simulations of multilayer folding using Newtonian materials.
The applied model setup comprises a thin layer exhibiting the pre-existing geometrical asymmetry
sandwiched between two thicker layers, all intercalated with a lower-viscosity matrix and subjected to
layer-parallel shortening. When the two outer thick layers buckle and amplify, two processes work
against the asymmetry: layer-perpendicular flattening between the two thick layers and the rotational
component of flexural flow folding. Both processes promote de-amplification and unfolding of the pre-
existing asymmetry. We discuss how the efficiency of de-amplification is controlled by the larger-scale
fold amplification and conclude that pre-existing asymmetries that are open and/or exhibit low
amplitude are prone to de-amplification and may disappear during buckling of the multilayer system.
Large-amplitude and/or tight to isoclinal folds may be inherited and develop type 3 fold interference
patterns.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Parasitic folds are very characteristic features in geological
multilayer buckle folds and are treated in almost every traditional
and modern structural geology text book (Fossen, 2010; Price and
Cosgrove, 1990; Ramsay and Huber, 1987; Twiss and Moores,
2007). During polyharmonic folding (Ramsay and Huber, 1987),
different wavelengths are established by layers of different thick-
nesses (according to Biot's dominant wavelength theory;
Adamuszek et al., 2013; Biot, 1961; Fletcher, 1977) resulting in folds
with smaller wavelength situated within folds with larger wave-
length. The folds with smaller wavelength are termed parasitic
folds or second-order folds (as opposed to the first-order folds with
larger wavelength).

Parasitic folds develop simultaneously with the larger fold;
hence they share the same (or similar) fold axis orientation and

axial plane orientation as the larger fold. This similarity of style and
attitude of different fold orders are known as the Pumpelly's rule
that emphasizes the “general parallelism which exists between the
minute and general structure”, an observation that Pumpelly et al.
(1894) made in the Green Mountains in Massachusetts. As a
result, parasitic folds exhibit a characteristic asymmetry (or fold
vergence), often referred to as S- and Z-shape on either limb of the
larger fold and symmetric M-shape close to the hinge of the larger
fold. Until De Sitter (1958) introduced the term parasitic fold, such
second-order folds were also referred to as drag folds (Ramberg,
1963; Williams, 1961).

The development of parasitic folds has been studied analytically
(Hunt et al., 2001; Ramberg, 1964, 1963; Treagus and Fletcher,
2009), as well as in analog (Ramberg, 1964, 1963) and numerical
models (Frehner and Schmalholz, 2006). All these studies agree
that parasitic folds develop by a combination of buckle folding on
two different length scales. When a multilayer stack experiences
layer-parallel shortening, all layers start to buckle; but the thin
layers develop finite amplitudes prior to the thicker layers and
develop short-wavelength symmetric folds (Frehner and
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Schmalholz, 2006). These folds are then sheared into an asym-
metric geometry (S- and Z-folds; following Pumpelly's rule) on the
limbs of larger-wavelength folds, which develop finite amplitudes
slightly later. In the hinge area of these larger folds, shearing is less
marked and the parasitic folds remain symmetric (M-folds; Frehner
and Schmalholz, 2006). Even studies not specifically focusing on
the development of parasitic folds reproduced this two-stage
development in multilayer folds (Schmalholz and Schmid, 2012).

Pumpelly's rule seems to be axiomatic. Van der Pluijm and
Marshak (2004) wrote: “In any case, remember that a pattern of
fold vergence opposite to that in Figure 10.16 (a “Christmas-tree” ge-
ometry) cannot be produced in a single fold generation (Figure 10.17).
In fact, this geometry is diagnostic of the presence of at least two fold
generations.” Indeed, an alleged wrong fold vergence in geological
field studies is usually used to argue for two distinct tectonic
folding phases. For example, Froitzheim et al. (1994) observed folds
on the decameter-scale in the Silvretta nappe (Austroalpine base-
ment; SE Switzerland) that have the wrong vergence for their po-
sition within the Ducan synform and Pleuger et al. (2008) observed
outcrop-scale folds in the Monte Rosa nappe (Middle Penninic
basement; NW Italy) that have the wrong vergence for their posi-
tion within the Vanzone antiform. In the first case, Froitzheim et al.
(1994) interpreted the observed folds to originate from an earlier
deformation phase than the larger-scale synform; in the second
case, Pleuger et al. (2008) interpreted the observed folds to be
younger than the larger-scale antiform. Similarly, Duncan (1984)
interpreted minor folds with wrong vergence in the Thor-Odin
gneiss dome (Shuswap metamorphic complex, Canadian Cordil-
lera) to originate from a later deformation phase than the larger-
scale Pingston fold.

Harrison and Falcon (1934) demonstrated that orogen-
perpendicular gravitational collapse can result in a wrong vergence
of second-order folds. However, this explanation was suggested for
massive limestone formations and is not applicable to the examples
above. Llorens et al. (2013b) demonstrated that higher-viscous layers
oriented obliquely in a ductile shear zone can develop different
vergences during a single simple-shear deformation event or even
unfold completely while other layers remain folded. However, their
numerical simulations mimic ductile shear zones and not smaller-
scale parasitic folds within a larger-scale fold structure and are
therefore not directly applicable to the problem at hand.

Herewe present a feasibility study to investigate if second-order
folds with wrong vergence can occur in multilayer buckle folds
generated during only one single deformation phase. In particular,
we test if a pre-existing small-scale asymmetry in the multilayer
stack (e.g., from non-planar sedimentation and diagenesis) can
survive the buckling process and can therefore be inherited as an
asymmetric fold with wrong vergence. To test this, we apply a 2D
finite-element model to simulate multilayer buckle folding of
Newtonian materials.

2. Numerical method and setup

We use the same numerical model that has been explained in
detail and successfully benchmarked in Frehner and Schmalholz
(2006) and Frehner (2011). The method is based on the finite-
element spatial discretization method (Zienkiewicz and Taylor,
2000) using triangular T7/3 isoparametric elements (Cuvelier
et al., 1986). The model solves the Stokes equations in 2D plane-
strain formulation in the absence of gravity coupled with an
incompressible linear viscous (Newtonian) rheology; hence we
model the slow viscous deformation governing buckle folding. We
use perfectly body-fitting Lagrangian meshes, which allow
modeling sharp viscosity jumps across interfaces between indi-
vidual layers of the multilayer stack (Deubelbeiss and Kaus, 2008).

2.1. Model setup

The initial model setup and boundary conditions are depicted in
Fig. 1 and detailed values for the model setup are provided in
Table 1. The model consists of three high-viscosity layers (viscosity
hL) intercalated with a low-viscosity matrix (viscosity hM). The two
outer layers have equal thickness, H0, and a distance to each other
of also H0. Sandwiched between them, the third layer is ten times
thinner (thickness h0 ¼ 0.1 � H0). All model dimensions are
normalized using the thickness of the thick layers (i.e., H0 ¼ 1); all
model viscosities are normalized using the matrix viscosity (i.e.,
hM ¼ 1) (Table 1).

To initiate buckling of the two thicker layers, we impose a si-
nusoidal initial geometry on their interfaces according to

yiðxÞ ¼ �Aouter sin
�
2px
ld

�
þ ci; (1)

where yi(x) is the y-coordinate (as a function of the x-coordinate) of
the ith interface (i.e., bottom and top interface of the bottom and
top thick layer), Aouter is the amplitude of the sinusoidal geometry,
and ci is a constant value chosen for each interface such that the
layers have the desired thickness and distance to each other. The
wavelength of the sinusoidal initial geometry, ld, corresponds to
the dominant wavelength of the two-layer system (i.e., neglecting
the thin central layer) according to Schmid and Podladchikov
(2010):

ld ¼ 2pH0

�
2hL
6hM

�1=3
: (2)

Note that the x-axis origin is located at the inflexion point of the
outer thick layers (Fig. 1) to be consistent with Equation (1) and the

Fig. 1. Sketch (not to scale) of the 2D numerical model setup. A 3-layer system is
intercalated with a background matrix of low viscosity. The distance between the two
outer layers is equal to their individual thickness, H0. The central layer with a 10-times
smaller thickness, h0, is sandwiched between them. The zoom shows the initial
asymmetry of the central layer with the initial skew angle aini. Note that the x-axis
origin is located in the model center.
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