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a b s t r a c t

We present a method for fitting trishear models to surface profile data, by restoring bedding dip data and
inverting for model parameters using a Markov chain Monte Carlo method. Trishear is a widely-used
kinematic model for fault-propagation folds. It lacks an analytic solution, but a variety of data inver-
sion techniques can be used to fit trishear models to data. Where the geometry of an entire folded bed is
known, models can be tested by restoring the bed to its pre-folding orientation. When data include
bedding attitudes, however, previous approaches have relied on computationally-intensive forward
modeling. This paper presents an equation for the rate of change of dip in the trishear zone, which can be
used to restore dips directly to their pre-folding values. The resulting error can be used to calculate a
probability for each model, which allows solution by Markov chain Monte Carlo methods and inversion
of datasets that combine dips and contact locations. These methods are tested using synthetic and real
datasets. Results are used to approximate multimodal probability density functions and to estimate
uncertainty in model parameters. The relative value of dips and contacts in constraining parameters and
the effects of uncertainty in the data are investigated.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Trishear is a kinematic model for fault-propagation folds, in
which a triangular zone of distributed deformation occurs ahead of
the fault tip. It is capable of reproducing features such as non-
uniform forelimb dips and footwall synclines (Erslev, 1991) d

features that are not explained by kink band models (Suppe, 1985;
Suppe and Medwedeff, 1990) but are frequently observed in the
field. Deformation within the trishear zone can be described in
terms of a velocity field (Hardy and Ford, 1997; Zehnder and
Allmendinger, 2000) in which the velocity of a particle at any
given point can be calculated from its position relative to the fault
tip. By integrating this velocity through the slip of the fault as the
fault tip propagates, the geometry of a trishear fold can be modeled
from the initial stratigraphy and the trishear model parameters: tip
position, fault dip, fault slip, trishear zone apical angle, propagation
to slip ratio, and the concentration factor, which if greater than one
concentrates deformation toward the center of the trishear zone.
No analytic solution is known, but the integration can be performed

numerically.
Balanced cross sections, although fundamental to structural

geology, are often non-unique, andmultiple interpretations may be
possible. This is especially likely when subsurface data are absent.
Interpretations based on trishear kinematics are by no means
exempt from these concerns, and the six or seven (if the concen-
tration factor is included) free parameters in the model make it
likely that there will be a range of reasonable interpretations. In-
terpretations, such as shortening estimates based on a balanced
cross section, may have substantial uncertainty (Judge and
Allmendinger, 2011) and will be more useful if this uncertainty
can be quantified. Trishear folds, which must be modeled numer-
ically, are amenable to methods that require testing a large number
of potential cross-sections. Such techniques have been used to find
a best-fit trishear model for given data beginning with the work of
Allmendinger (1998), who used a grid search over the parameter
space. The grid search approach has subsequently been employed
by other authors (e.g. Allmendinger and Shaw, 2000; Allmendinger
et al., 2004; Cardozo, 2005; Lin et al., 2007), principally with the
aim of identifying a best-fit model.

Quantifying uncertainty in trishear parameters presents a
greater challenge than finding a best-fit model alone, but it is
essential to a full understanding of a structure. Although not
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commonly done, formal uncertainty can be estimated from grid
search results, as we demonstrate below. Other methods to quan-
tify uncertainty in trishear model parameters have been proposed
by Cardozo and Aanonsen (2009) and Regalla et al. (2010). Cardozo
and Aanonsen (2009) use the randomized maximum likelihood
(RML) method, in which the best fit is found by optimization for
many different realizations of the data and the results are plotted as
histograms for each trishear parameter. Regalla et al. (2010) use a
Monte Carlo simulation and plot histograms of all models for which
the objective function is below a certain threshold. Cardozo et al.
(2011) have also shown that simulated annealing can be used to
estimate the range of possible models. In this study, we propose the
use of Markov chain Monte Carlo methods. Such methods, while
not previously applied to trishear, are commonly used for data
inversion and are capable of both finding a best fit and estimating
uncertainty (Tarantola, 2005).

Trishear kinematics is fully reversible and so can be used to test
possible cross-sections by restoration (Allmendinger, 1998). A bed
trace, imaged in seismic data or exposed in outcrop along the
length of the fold, can be restored in this manner, and the model
results can be compared to a predicted geometry using an objective
function (such as distance from a point to a best fit straight line) in
order to evaluate the goodness of fit. Mapped contacts along a
surface profile can also be restored and matched across the fold or
to a known original depth, but dip measurements pose more of a
problem. The approach used in previous work to match dip mea-
surements to trishear models (Cardozo, 2005; Regalla et al., 2010)
has been to forwardmodel beds, interpolate dips betweenmodeled
points, and attempt to match the observed dips.

In summary, work by various authors has demonstrated the
value of the inversemethod, using a variety of inversion algorithms,
in fitting trishear models to data. More limited, but significant,
work has shown that the technique can be applied to datasets
consisting of dips or of mixed dip and point data and has proposed
some methods by which error in trishear parameters can be esti-
mated. We build on this body of knowledge by developing a
method for the direct restoration of dip data, testing Markov Chain
Monte Carlo techniques for trishear data inversion and error esti-
mation, and investigating the relative value of contact positions and
bedding dips in constraining a trishear model.

2. Methods

2.1. Velocity equations

The trishear velocity field proposed by Zehnder and
Allmendinger (2000), while not the only possible velocity field, is
among the simplest and most widely used, often in its linear form
(s ¼ 1 in Eq. (1)) (Hardy and Allmendinger, 2011). This formulation
is supported by the finite element modeling of Cardozo et al. (2003)
for an elastoplastic material, which produces a similar fold shape.
This velocity field is defined with reference to a coordinate system
(x,y), for which the origin is at the fault tip and moves with it as the
fault propagates. A second coordinate system (z,h) has its origin
fixed at the initial fault tip position. The trishear zone is a triangular
region defined by the angle (4) between its boundaries and the x-
axis. The tangent of 4 is denoted m. In some cases, the trishear zone
may be asymmetric, requiring two 4 values (Zehnder and
Allmendinger, 2000), but we will focus on the symmetric case.
The hanging wall velocity outside the trishear zone is labeled v0.
Fig. 1 shows the geometry of the trishear zone with the coordinate
axes and important variables indicated. The trishear velocity field
of Zehnder and Allmendinger (2000) is:

vx ¼ v0
2

sgn yð Þ jyj
mx

� �
1
s þ 1

� �

vy ¼ v0m
2 1þ sð Þ

jyj
mx

� �
1þsð Þ
s � 1

� �

�xm � y � xm; s � 1

(1)

where sgn(y) indicates the sign of y, and s is a concentration factor.
Increasing s concentrates deformation toward the center of the
trishear zone. When s ¼ 1, the field is termed “linear” (Zehnder and
Allmendinger, 2000) or “homogeneous trishear” (Erslev, 1991). This
velocity field properly describes the velocities in the (z,h) coordinate
system. In the (x,y) coordinate system there is an additional
component of relative motion in the x direction, equal to ev0(P/S),
due to fault propagation. P/S is the ratio of fault propagation to fault
slip. In summary, there are seven parameters that determine the
form of a trishear fold: the two coordinates of the fault tip (xt, yt), the
fault ramp angle (fault dip), the total slip on the fault, P/S, f, and s.

This velocity field can be used directly to restore a folded bed by
incrementally moving points along the bed. For dip data, the for-
ward modeling approach (Cardozo, 2005; Regalla et al., 2010), re-
quires moving a large number of points for each dip, which is time-
consuming. If dips are instead restored directly, via an equation for
the rate of change of dip, dip data can be inverted in the same
manner as point data. This approach is much more efficient, allows
a restoration approach to be used with datasets that contain both
dip and point (bed or contact) data, and also reduces the errors
inherent in interpolating between points.

The velocity field of Eq. (1), or any trishear velocity field, can be
used to define a strain rate tensor in two-dimensions:

_e ¼

2
6664
vvx
vx

vvx
vy

vvy
vx

vvy
vy

3
7775 (2)

If a dip in cross-section is defined by an angle that it makes with
the x-axis in the trishear coordinate system, q, then the strain rate
tensor can be transformed into a coordinate system aligned with
the dip:

_e
0 ¼ aT _ea (3)

where _e′ is the strain rate tensor in a Cartesian coordinate system
with its x0-axis parallel to the dip, and a is the rotation matrix:

a ¼
�
cosq �sinq
sin q cosq

�
(4)

The off diagonal term _e′21 of the rotated strain rate tensor will
then be the rate of rotation of a line parallel to the x0-axis
(Allmendinger et al., 2012) and will therefore be equal to the rate of
change of dip.

_q ¼ _e
0
21 ¼ �vvx

vx
cosqsinqþ vvy

vx
cos2q� vvx

vvy
sin2qþ vvy

vy
cosqsinq

(5)

For the trishear velocity field of Eq. (1), this simplifies to

_q ¼ � v0
2sx

" ffiffiffiffiffi
m

p � jyj
mx

�1þs
2s

cosq� sgnðyÞ
ffiffiffiffiffi
1
m

r � jyj
mx

�1�s
2s

sinq

#2
(6)

Note that Eq. (6) uses the convention that q is positive
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