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a b s t r a c t

Mechanical twinning along calcite e-planes has been used for paleostress analyses. Since the twinning
has a critical resolved shear stress at ~10 MPa, not only principal stress axes but also differential stress
can be determined from the twins. In this article, five-dimensional stress space used in plasticity theory
was introduced to describe the yield loci of calcite e-twinning. The constraints to paleostress from twin
and untwin data and from calcite grains twinned on 0, 1, 2 and 3 e-planes were quantified by using their
information contents, which were defined in the stress space. The orientations of twinned and
untwinned e-planes are known to constrain not only stress axes but also differential stress, D, but they
loose the resolution of D if the twin lamellae were formed at D greater than 50e100 MPa. On the other
hand, it is difficult to observe twin lamellae subparallel to a thin section. The stochastic modeling of this
effect showed that 20e25% of twin lamellae can be overlooked. The degradation of the constraints by this
sampling bias can be serious especially for the determination of D.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Calcite e-twinning is useful for understanding tectonics in the
upper crust, because calcite is a common mineral and records de-
formations at low temperatures and low differential stresses (e.g.,
Turner, 1953; Groshong, 1972; Jamison and Spang, 1976; Laurent
et al., 1981; Pfiffner and Burkhard, 1987; Burkhard, 1993; Nemcok
et al., 1999; Constantin et al., 2007). Calcite e-twin has been used
to infer not only the orientations but also the magnitudes of pale-
ostresses. Researchers have often applied stress tensor inversion to
natural data (Lacombe, 2010, and references therein), though they
utilize Etchacopar's (1984) method, which is based on the
assumption that e-planes are twinned if the resolved shear stress
along their gliding directions exceed a critical value. It has been
scarcely pursued theoretically since the study by Jamison and
Spang (1976) how tightly calcite e-twins constrain stress based on
the assumption.

This paper aims at the theoretical investigation of the con-
straints from calcite e-twins to establish the basis for improving the
stress inversion scheme. In this paper, the theoretical analyses of
Takeshita et al. (1987), Fry (2001) and Sato and Yamaji (2006) are
reformulated to relate stress and the orientations of twinned and
untwinned e-planes to define the yield locus of calcite e-twinning

and to quantify the constraints from e-twin lamellae. The present
study is based on the fact that the twinning occurs if resolved shear
stress along the gliding direction of a twin plane exceeds a critical
value, tc, which is assumed to be 10 MPa (Lacombe, 2010, and
references therein) throughout of this paper, meaning that the
twins are useful to investigate tectonics at the depths of about
0.5e5 km (Lacombe, 2007; Lacombe et al., 2009).

Here, we introduce, first, the five-dimensional stress space in
which the yield loci of e-twinning is defined. Second, by using in-
formation theory, the constraints from twin and untwin data are
quantitatively estimated, because several researchers utilized not
only the attitudes of twinned e-planes but also those of untwinned
ones in their stress inversion (Laurent et al., 1981, 1990; Etchecopar,
1984). Fry (2001, Fig. 3) explainedwhy untwin data are necessary to
constrain differential stress. The constraints from grains twinned
on 0, 1, 2 and 3 e-planes are evaluated as well. In case the number
density of twin lamellae is low, attention must be payed to sam-
pling bias, because the bias degrades the constraints. It is shown
that 20e25% of twin lamellae are overlooked due to the low angles
made by the lamellae and the observation plane, e.g., a thin section.
Thus, the bias can have distortive effects on paleostress analysis.

2. Notations and basic equations

In this section we introduce mathematical symbols and impor-
tant terms for the following analyses. Let c be the unit vector
indicating the host c-axis of a twin lamella, the unit normal of
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which is denoted by e (Table 1). The vectors are represented by
(3�1)-matrices. The angle made by c and e is denoted by a, which
is about 26.25� (Twiss and Moores, 2006, p. 499). We pay attention
to the ‘footwall’ of a twin lamella to consider the gliding direction
and shear stress on the lamella. Corresponding to the choice that
compression is positive in sign, the unit normal, e, is defined to
point inward of the footwall block (e.g., Yamaji, 2007, p. 62). The
unit vector, g, indicates the gliding direction of the footwall.

A calcite grain has three sets of planes for e-twinning, which
have three-fold symmetry about the c-axis. A set of e-planes is
characterized by the paired vectors, e and g. Each of the three sets
has two states, twinned or untwinned. Following
Venkitasubramanyan (1971), we refer to calcite grains with 1, 2 and
3 twinned planes as singlets, doublets and triplets, respectively. In
addition, we use the term, ‘zeroplets,’ to refer to untwinned grains.

Twinning is assumed to occur on a twin set if the resolved shear
stress parallel to the gliding direction, t, satisfies

t � tc: (1)

Otherwise, the potential set is left untwinned. A stress tensor is
said to be compatible with a twin datum, if this condition is met on
the e-plane from which the datum is obtained. Likewise, a stress
tensor is said to be compatible with an untwin datum, if this con-
dition does not hold on an untwinned e-plane. A stress tensor is
said to explain a twin datum, if Eq. (1) is satisfied on the e-plane.

Given a stress tensor, s, the resolved shear stress along the g
direction upon the plane normal to e is

t ¼ �gTse (2)

The minus signs in Eq. (2) correspond to the fact that defor-
mation occurs in the direction to relieve stress. The lateral trans-
lation of Mohr circles on a Mohr diagram does not affect shear
stresses. Accordingly, we assume that theminimum principal stress
equals zero, and consider the stress tensor of the form,

s ¼ s0D; (3)

where D¼s1 � s3 is differential stress, and

s0 ¼ Q diagð1;F;0Þ QT; (4)

Q the orthogonal matrix representing the principal orientations,
and F ¼ (s2 � s3)/(s1 � s3). F is called stress ratio, and has a value
between 0 and 1. It follows from Eqs. (2) and (3) that

t ¼ �gTs0eD: (5)

The tensor, s0, carries the information of the attitude (Q) and
shape (F) of stress ellipsoid, the size of which is denoted by D.

3. Yield locus

In this section, we introduce the yield locus of calcite e-twin-
ning. The locus is represented by a solid figure in five-dimensional
stress space. Although the space and the locus are the concepts of
abstract plasticity theory, it is worth introducing them, because (1)
not only a multi-axial state of stress but also twin and untwin data
are represented by position vectors in the space, and (2) the con-
straints from twin and untwin data on differential stress have
geometric interpretations. In addition, the constraints from twin
and untwin data are quantitatively estimated in the space.

3.1. Sigma- and epsilon-vectors

It is convenient for theoretical considerations to introduce the
deviatoric stress tensor,

T ¼ s�
�
s1 þ s2 þ s3

3

�
I:

Combining Eqs. (3) and (4), we have s3¼ 0, s2¼FD, s1¼D and

T ¼
�
s0 �Fþ 1

3
I
�
D; (6)

Now, suppose the tensor,

2 ¼ 1
l

�
s0 �Fþ 1

3
I
�
; (7)

where the denominator in the right-hand side of this equation,

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
F2 � Fþ 1

��
3

q
; (8)

is always positive in sign, and has the minimum,1/2, at F¼ 1/2 and
the maxima, 1=

ffiffiffi
3

p
z0:58, at F ¼ 0 and 1. Then, Eq. (6) is rewritten

as T ¼ 2lD. The tensor, 2, has the second basic invariant,

2II≡
1
2
ð2 : 2Þ ¼ 1

2

�
2211 þ 2222 þ 2233

	
þ 2223 þ 2231 þ 2212 ¼ 1; (9)

Table 1
List of symbols. Vectors in the physical space and five-dimensional space are
denoted by boldface letters and arrows, respective, such that g and s!.

c Unit vector representing the orientation of c-axis
c! ð1Þ

;…; c! ðMÞ
Uniformly distributed points on S

D Differential stress
diag (a,b,c) 3� 3 diagonal matrix with the diagonal components,

a, b and c
e Unit vector normal to twin lamella
g Unit vector indicating griding direction
H( ) Heaviside step function
I Information content
I 3� 3 identity matrix
It Information content of a twin datum
Iu Information content of an untwin datum
M Number of points, c! ð1Þ

;…; c! ðMÞ
, distributed

with uniform intervals on S
P Probability
P Elementary orthogonal projector
Q Orthogonal matrix representing the orientations

of stress axes
S, S Unit sphere in five-dimensional space and its area
s Shear stress (vector)
( )T Matrix transpose
T Deviatoric stress tensor
TII Second basic invariant of T
x! Position vector in the five-dimensional stress space
a Angle between c and e
ε Reduced strain tensor
εII Second basic invariant of ε
ε
! Epsilon-vector, five-dimensional unit vector

corresponding to a twin or untwin datum
q Angle made by g and s
l Normalizing factor for 2
F Stress ratio
s Stress tensor
s0 Reduced stress tensor with the eigenvalues, 0, F and 1
s! Sigma-vector, five-dimensional unit vector corresponding to 2

2 Reduced stress tensor with the eigenvalues,
(2 � F)/3l, 2(F � 1)/3l and �(Fþ 1)/3l

2II Second basic invariant of 2
s1, s2, s3 Principal stresses
t Resolved shear stress along g
t Non-dimensionalized resolved shear stress
tc Critical resolved shear stress
J Radius of a spherical cap on S
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