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a b s t r a c t

A significant proportion of moderate-large earthquakes, plus aftershocks, nucleate within and propagate
through upper-crustal carbonate-dominated sequences, where the effects of lithological variations on
fault behaviour are poorly understood. The Gubbio fault is an active (1984, Ms¼ 5.2) normal fault in Italy,
hosted in MesozoiceCenozoic limestones and interbedded marls. Fault core domains derived from
limestone at the studied outcrop are characterised by fractures/hydrofractures and breccias and host a
number of localised (<1.5 mm wide) principal slip zones (PSZs). The majority of displacement of up to
230 m is concentrated in these PSZs, which comprise cataclasites, gouges, and calcite veins. Degassing
bubbles, ‘quenched’ calcite, and the transformation of smectite to illite, are also observed within PSZs,
implying frictional heating and seismic slip. In contrast, marl-rich domains exhibit distributed shear
planes bounding a continuous and pervasive foliation, defined by phyllosilicate-rich pressure-solution
seams. Microstructures in the seams include folds/kinks of phyllosilicates and pressure shadows around
clasts, consistent with aseismic fault creep. A model is proposed for the behaviour of lithologically
complex carbonate-hosted faults during the seismic cycle, whereby limestone-dominated fault core
domains behave in a predominantly seismic manner, whereas phyllosilicate-rich domains behave in a
predominantly aseismic manner.

� 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The large-scale architecture of upper-crustal faults at <5 km
depth comprises either a single high-strain fault core surrounded
by a damage zone (e.g. Chester et al., 1993), or multiple high-strain
cores, which bound lenses of damagedmaterial (e.g. Faulkner et al.,
2003). The differentiation between fault core and damage zone is
generally based on the presence and spatial distribution of defor-
mation products (Chester and Logan, 1986; Chester et al., 1993;
Shipton et al., 2006). The fault core, which ranges from a few me-
tres up to a few tens of metres wide, consists of cataclastically
deformed fault rocks and typically contains one or more principal
slip surfaces (PSSs) (Shipton et al., 2006; Faulkner et al., 2010).
Damage zones, which are up to a few hundred metres in width,
consist of fractured protolith rocks and smaller displacement

subsidiary slip surfaces (Faulkner et al., 2010). The fault core is
where most of the displacement is accommodated, and the defor-
mation processes occurring here are the focus of the present paper.

Fault core architectures vary widely between faults and appear
to be controlled, in part, by the composition of the protolith. Upper-
crustal faults derived from carbonates (e.g. Agosta and Aydin, 2006;
Micarelli et al., 2006; De Paola et al., 2008; Bastesen and Braathen,
2010; Molli et al., 2010; Smith et al., 2011a; Fondriest et al., 2012)
and crystalline rocks (e.g. Chester and Chester, 1998;Wibberley and
Shimamoto, 2003; Walker et al., 2013) tend to exhibit narrow fault
cores that are less than a fewmetres in width, comprising cohesive
and incohesive random-fabric fault rocks such as breccias, cata-
clasites and gouges (Sibson, 1977). The majority of the displace-
ment within these fault cores is localised along discrete PSSs and
within their associated principal slip zones (PSZs).

Numerous field studies of major seismogenic faults suggest that
slip during individual earthquake events is localised along these
PSZs, which are typically no more than a few cm thick (see Sibson,
2003, for a review). Notable examples include: the PSZ associated
with the 1999 Mw 7.6 Chi Chi thrust earthquake in Taiwan, which
has been estimated to be just 1 mm thick (Kuo et al., 2013); the
Nojima fault, responsible for the 1995 M 7.2 Kobe earthquake in
Japan, which contains several gouge and pseudotachylyte layers,
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each less than a few mm thick (Otsuki et al., 2003); and the PSZ
responsible for the 2008 Ms 8.0 Wenchuan earthquake in China,
which comprises aw1 cm thick layer of fault gouge (Li et al., 2013).
At the microscale, PSZs are often observed to contain sub-zones,
which range from a few hundred microns to a few millimetres in
width, composed of variably developed cataclasites and gouges and
frequently displaying Riedel shear geometries (e.g. Power and
Tullis, 1989; Otsuki et al., 2003; De Paola et al., 2008; Smith et al.,
2011a; Fondriest et al., 2012).

In contrast, upper-crustal fault zones rich in phyllosilicates
typically display much wider fault cores, often adhering to the
multiple fault cores model. For example, the exhumed Carboneras
fault in SE Spain has a fault core up to 1 km wide (Faulkner et al.,
2003), which comprises numerous high-strain gouge zones of a
fewmetres in thickness (Faulkner et al., 2003). Similarly, the SAFOD
(San Andreas Fault Observatory at Depth) borehole core and field
studies of the Median Tectonic Line in Japan have revealed several
phyllosilicate-rich fault core strands, each>1 mwide (Zoback et al.,
2010; Holdsworth et al., 2011; Jefferies et al., 2006). Rather than
displacement being localised within PSZs, it is uniformly distrib-
uted within each gouge band; and rather than random-fabric fault
rocks being the dominant deformation products, phyllosilicate-rich
fault cores typically display a continuous, highly foliated fabric,
though Riedel shear geometries are still conspicuous features (e.g.
Rutter et al., 1986, 2012; Faulkner et al., 2003).

Consequently, in lithologically heterogeneous, upper-crustal
fault zones, where crystalline/carbonate and phyllosilicate-rich
protoliths are interlayered, we might expect to see a complex
fault zone architecture with separate domains of localised and
distributed deformation. This geometry has been documented
along ancient, exhumed examples of presently inactive major
strike-slip faults (e.g. the Carboneras fault zone, Faulkner et al.,
2003), low-angle normal faults (e.g. the Zuccale fault in Central
Italy, Collettini and Holdsworth, 2004; Smith et al., 2011b) and in
accretionary complexes (e.g. the Chrystalls Beach Complex mél-
ange, New Zealand, Fagereng and Sibson, 2010). Attention now is
turning to active fault zones, in an attempt to understand how
lithological heterogeneities within multi-layered sequences cut by
a fault may affect not only the fault zone architecture, but also the
seismic behaviour of the fault (e.g. Nemser and Cowan, 2009;
Chiaraluce, 2012; Gratier et al., 2013; Tesei et al., 2013).

Quartzo-feldspathic and carbonate rocks typically have sliding
friction coefficients in the Byerlee range of 0.6e0.85 (Byerlee, 1978)
and experimentally exhibit slip-weakening and velocity-
weakening behaviour (Logan et al., 1992; Beeler et al., 1996;
Marone et al., 1990; Gu and Wong, 1994; Verberne et al., 2010;
Collettini et al., 2011), which is necessary for earthquake nucle-
ation and unstable stick-slip behaviour (Dieterich and Kilgore,
1994; Marone, 1998; Scholz, 1998). These lithologies also display
dynamic-weakening behaviour during high-velocity rotary shear
experiments (see Di Toro et al., 2011, for a review), with the coef-
ficient of friction reducing to sub-Byerlee values (<0.2) at seismic
slip velocities, facilitating earthquake propagation.

In contrast, many phyllosilicates (e.g. talc, smectites) are weak,
particularly when wet, (sliding friction �0.3, e.g. Behnsen and
Faulkner, 2012) and most types exhibit velocity-strengthening
behaviour (e.g. Saffer et al., 2001; Saffer and Marone, 2003;
Moore and Lockner, 2004, 2011; Ikari et al., 2007, 2009, 2011;
Morrow et al., 2007; Tembe et al., 2010; Behnsen and Faulkner,
2012; Sone et al., 2012; Tesei et al., 2012). Velocity-strengthening
behaviour does not favour earthquake nucleation and rock units
displaying this behaviour are expected to act as barriers to earth-
quake propagation due to a positive stress drop (Scholz, 1998).
Thus, upper-crustal fault rocks rich in weak phyllosilicate minerals
are thought to deform predominantly aseismically by fault creep.

For example, the creeping behaviour of faults such as the San
Andreas is attributed to the presence of smectitic phyllosilicates in
fault gouges (e.g. Carpenter et al., 2011; Lockner et al., 2011;
Holdsworth et al., 2011).

Over the course of the seismic cycle, a fault may experience a
broad spectrum of slip rates. These range from mm/yr, during the
interseismic period, to mm/day-week during the pre-seismic
(earthquake nucleation) and post-seismic (afterslip) periods and,
then, to slip rates of m/s during earthquake propagation. It seems
reasonable to hypothesise that lithological heterogeneities within
the fault core will strongly influence which parts of a fault zone
deform seismically or aseismically during the different seismic in-
tervals. To further investigate this proposal, we document here the
deformational and microstructural characteristics of the Gubbio
normal fault (1984, Ms¼ 5.2) in the northern Apennines of Italy
(Fig. 1a). This upper-crustal, seismically active fault deforms a
succession of alternating limestone and cm-scale marl beds.
Outcrop tomicroscale deformation features within the Gubbio fault
zone have previously been studied by Bussolotto et al. (2007), who
characterised the spatial and temporal relationships of structures in
the fault zone, together with a determination of the P/T conditions
and fluid behaviour during deformation. Here, we use a combina-
tion of microstructural (optical microscopy and field emission
scanning electron microscopy, SEM) and mineralogical analyses
(energy-dispersive X-ray spectroscopy, EDX, and X-ray diffraction,
XRD) to study the dominant deformation mechanisms active
within the fault core, and to assess the likely influence of lithology
on deformation style. We use these findings to propose a concep-
tual model for the long- (inter- and post-seismic period) and short-
term (coseismic) frictional behaviour of the fault zone, which can
then be tested by future experimental work.

2. Geological setting

The northern Apennines of Italy have undergone NEeSW
shortening since the middle Miocene, resulting in the development
of a NE-verging fold and thrust belt (Barchi et al., 1998b). In the
Gubbio area, this deformation is represented by the NWeSE strik-
ing Gubbio anticline (De Paola et al., 2006 and references therein).
An upper PlioceneeQuaternary late-orogenic extensional regime is
superimposed upon the folds and thrusts, forming a series of
extensional basins bounded by NNWeSSE trending normal faults
(Barchi et al., 1998a; Boncio and Lavecchia, 2000) (Fig. 1a). This
extensional regime currently dominates the tectonics of the
northern Apennines, although it has a relatively slow separation
rate of 2e3 mm/yr (D’Agostino et al., 2009).

The Gubbio fault is an active segment of a 150 km long fault
system known as the Umbria Fault System (Collettini et al., 2003).
The surface trace is 22 km long, striking NWeSE (wN130�) (Figs. 1a
and 2a). Seismic reflection data suggest that it has a listric profile at
depth, with average dips of w60e70� to the SW at the surface,
decreasing to 10e15� at w6 km, where it reactivates a pre-existing
thrust fault (Mirabella et al., 2004) (Fig. 1a). At the surface, the fault
juxtaposes Jurassic-Oligocene carbonates, belonging to the
UmbriaeMarche succession, in the footwall against Quaternary
fluvio-lacustrine deposits, of the Gubbio Basin, in the hangingwall
(Collettini et al., 2003; Bussolotto et al., 2007) (Fig. 1b).

A maximum displacement of 3.2 km at the centre of the Gubbio
Basin was estimated by Collettini et al. (2003), which accumulated
during multiple tectonic phases. Historical and instrumental re-
cords of moderate-large earthquakes occurring on the Gubbio fault
are limited, since no permanent station coverage exists (Collettini
et al., 2003; Pucci et al., 2003). However in 1984, the Gubbio area
experienced an Ms 5.2 (Haessler et al., 1988) earthquake, located
w10 km south of the town of Gubbio at 7 km depth (ISC, 2001), and
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