Accepted Manuscript

Transtensional folding

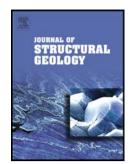
Haakon Fossen, Christian Teyssier, Donna Whitney

PII: S0191-8141(13)00157-0

DOI: 10.1016/j.jsg.2013.09.004

Reference: SG 2959

To appear in: Journal of Structural Geology


Received Date: 19 July 2013

Revised Date: 3 September 2013

Accepted Date: 11 September 2013

Please cite this article as: Fossen, H., Teyssier, C., Whitney, D., Transtensional folding, *Journal of Structural Geology* (2013), doi: 10.1016/j.jsg.2013.09.004.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Transtensional folding

2	Haakon Fossen ^{a*} , Christian Teyssier ^b , Donna Whitney ^b
3	^a Department of Earth Science/Museum of Natural History, University of Bergen, Postboks
4	7803, N-5007 Bergen, Norway. <u>haakon.fossen@geo.uib.no</u> , tel.: +47 97018795
5	^b Department of Earth Sciences, University of Minnesota, Minneapolis MN 55455, USA
6	
7	Abstract
8	Strain modeling shows that folds can form in transtension, particularly in simple
9	shear-dominated transtension. Folds that develop in transtension do not rotate toward the
10	shear zone boundary, as they do in transpression; instead they rotate toward the divergence
11	vector, a useful feature for determining past relative plate motions. Transtension folds can
12	only accumulate a fixed amount of horizontal shortening and tightness that are prescribed
13	by the angle of oblique divergence, regardless of finite strain. Hinge-parallel stretching of
14	transtensional folds always exceeds hinge-perpendicular shortening, causing constrictional
15	fabrics and hinge-parallel boudinage to develop.
16	These theoretical results are applied to structures that developed during oblique
17	continental rifting in the upper crust (seismic/brittle) and the ductile crust. Examples
18	include (1) oblique opening of the Gulf of California, where folds and normal faults
19	developed simultaneously in syn-divergence basins; (2) incipient continental break-up in
20	the Eastern California-Walker Lane shear zone, where earthquake focal mechanisms reflect
21	bulk constrictional strain; and (3) exhumation of the ultrahigh-pressure terrain in SW
22	Norway in which transtensional folds and large magnitude stretching developed in the

23 footwall of detachment shear zones, consistent with constrictional strain. More generally,

Download English Version:

https://daneshyari.com/en/article/6444983

Download Persian Version:

https://daneshyari.com/article/6444983

Daneshyari.com