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a b s t r a c t

The dynamic theory of deformable ellipsoidal inclusions in slow viscous flows was worked out by J.D.
Eshelby in the 1950s, and further developed and applied by various authors. We describe three ap-
proaches to computing Eshelby’s ellipsoid dynamics and other homogeneous deformations. The most
sophisticated of our methods uses differential-geometric techniques on Lie groups. This Lie group
method is faster and more precise than earlier methods, and perfectly preserves certain geometric
properties of the ellipsoids, including volume. We apply our method to the analysis of naturally
deformed clasts from the Gem Lake shear zone in the Sierra Nevada mountains of California, USA. This
application demonstrates how, given three-dimensional strain data, we can solve simultaneously for
best-fit bulk kinematics of the shear zone, as well as relative viscosities of clasts and matrix rocks.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Geologists often use elliptical and ellipsoidal markers to char-
acterize strain and infer rheology. Depending on the structural or
tectonic context, the ratio r between a clast’s viscosity and the host
rock’s viscosity may vary widely. Passive markers, where r ¼ 1, are
perhaps the most thoroughly understood case (e.g., Ramsay, 1967;
Dunnet, 1969; Elliott, 1970; Matthews et al., 1974; Lisle, 1977). Ex-
amples include reduction spots (e.g., Tullis and Wood, 1975) and
ooids (e.g., Cloos, 1947, 1971). Rigid clasts, where r ¼N, are another
important special case. Jeffery (1922) developed a dynamic theory
of rigid ellipsoid rotation, which has been applied extensively (Gay,
1968a, b; Ghosh and Ramberg, 1976; Passchier, 1987; De Paor, 1988;
Jezek et al., 1996; Simpson and De Paor, 1997; Jessup et al., 2007).
Voids, where r ¼ 0, represent the other end-member case. Voids
have been used in volcanology to study the kinematics of flowing
lavas (e.g., Rust et al., 2003) and to estimate magma viscosity (e.g.,
Manga et al., 1998).

However, ellipsoidal markers in rocks are not always well-
modeled by these three idealized special cases. Competent clasts
may exhibit viscosity ratios 1 < r < N, and incompetent clasts may
exhibit 0 < r < 1 (Fig. 1). A dynamic theory of deformable ellipsoids
in slow viscous flows was developed by Eshelby (1957, 1959) and
Bilby et al. (1975). This theory handles all viscosity ratios, including
the special cases of passive, rigid, and void ellipsoids. The theory
has been extended with new computational approaches (Freeman,
1987; Schmid and Podladchikov, 2003; Mulchrone and Walsh,
2006; Jiang, 2007a), and modified to handle interacting clasts
(Mandal et al., 2003), different clast or matrix properties (e.g.,
Fletcher, 2004, 2009; Dabrowski and Schmid, 2011; Mancktelow,
2011), and other clast shapes (Treagus and Treagus, 2001;
Treagus, 2002).

In this paper, we present new approaches to computing Eshel-
by’s deforming ellipsoids. Our main method relies on a mathe-
matical structure called a Lie group (see, e.g., Belinfante and
Kolman, 1972; Gilmore, 1974; Curtis, 1984; Hall, 2003; Pollatsek,
2009), explained in more detail in Section 3.3. Like earlier
methods, our method produces a numerical approximation to the
deformation of the ellipsoids, but with three advantages. First, the
method automatically preserves desirable characteristics of the
ellipsoids, such as their volumes and basic ellipsoidal shape.
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Second, the method applies not just to Eshelby’s ellipsoids, but to
all non-steady homogeneous deformations. Third, the method is
faster and more precise than earlier methods. Such speed is of
practical value to geologists, because the analysis of naturally
deformed rocks may require the simulation of many ellipsoid de-
formations. As an example application, we inverse-model
deformed clast data from the Gem Lake shear zone in the Sierra
Nevada mountains of California, USA (Section 5). This application
demonstrates how, given three-dimensional strain data, we can
solve simultaneously for best-fit bulk kinematics of the shear zone
as well as viscosity ratios of several clast types. We compare our
results with those from a previously published study that relied on
traditional strain modeling.

2. Mathematical framework

Consider a rock that contains a single ellipsoidally shaped in-
clusion of a different viscosity. We subject the rock to a volume-
preserving homogeneous deformation. As the matrix rock de-
forms, the inclusiondeformsdifferently due to the viscosity contrast.
We assume that both the matrix and the inclusion materials remain
homogeneous, isotropic, and of constant viscosity at all times.

In coordinates x ¼ [x1 x2 x3]u centered on the inclusion (Fig. 2),
the velocity _x at each point in the host rock is linearly related to the
position vector x at that point by a velocity gradient tensor L:

_x ¼ Lx: (1)

We are denoting by L both the tensor and its matrix representation
in the x coordinates. For simplicity of presentation, we assume that
the deformation is steady, so that L is constant. The techniques of
this paper could be extended to time-dependent L easily. Because
the flow preserves volume, tr L¼ 0. There are no other assumptions
or restrictions on L.

At any given time, the boundary ellipsoid of the inclusion can be
described by a tensor E (e.g., Flinn, 1979), in that the ellipsoid is the
set of points x such that

xuEx ¼ 1: (2)

Mathematically, E is a symmetric, positive-definite (0, 2)-tensor.
Symmetry and positive-definiteness mean that Eq. (2) defines an
ellipsoid, rather than a hyperboloid or other unphysical shape, and
that E diagonalizes as E¼ Qu ~E Q, whereQ is a rotation matrix, and
the ai > 0 (Fig. 3). The rows of Q are unit vectors (in x coordinates)
indicating the directions of the ellipsoid semi-axes in a right-
handed manner, and the ai are the semi-axis lengths. The matrix
~E is the tensor E rendered in a coordinate system ~x ¼ ½~x1~x2~x3�u
aligned with the ellipsoid’s axes (Fig. 2). When two of the semi-axis
lengths ai and aj are equal, there is an apparent ambiguity in
choosing the ~x coordinates, or equivalently Q. However, there is a
unique correct way to resolve this ambiguity (see Jiang (2007a) and
Appendix B). The volume of the ellipsoid is

~E ¼

2
64
a�2
1 0 0
0 a�2

2 0
0 0 a�2

3

3
75; (3)

4
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ffiffiffiffiffiffiffiffiffiffiffiffi
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p :

Under the assumption of slow viscous flow, Eshelby (1957) and
Bilby et al. (1975) showed that, if the inclusion is an ellipsoid, then
its deformation is also homogeneous. That is, for all x inside the
inclusion and along its boundary,

_x ¼ Kx; (4)

for some velocity gradient tensor K (viewed as a matrix, in the x
coordinates). The dynamics of the ellipsoid are most easily
described in the ~x coordinates (Appendix A). As the ellipsoid de-
forms, det E and the ellipsoid volume remain constant, but K
continually changes. Thus Eshelby’s theory is an example of a non-
steady homogeneous deformation. In contrast to the steady ho-
mogeneous case (Provost et al., 2004; Davis and Titus, 2011), the
differential equation that governs the non-steady case (Eq. (4))
admits no closed-form solution. One must resort to an iterative
algorithm that produces a numerical approximation to the defor-
mation. An inherent trade-off exists between the precision of the
simulation and the computational time required. Imprecision
causes the ellipsoid to drift away from its true size, shape, and
orientation. In some cases, imprecision may lead to a catastrophic
failure, such as an ellipsoid that degenerates to a cylinder or

Fig. 1. The spectrum of possible ellipsoid problems, organized by viscosity ratio r.

Fig. 2. Two coordinate systems are employed. The x coordinates are fixed. The ~x co-
ordinates are aligned with the axes of the ellipsoid, and rotate over time.
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