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a b s t r a c t

Earth’s lithosphere is heterogeneous in rheology on a wide range of observation scales. When subjected
to a tectonic deformation, the incurred flow field can vary significantly from one rheologically distinct
element to another and the flow field in an individual element is generally different from the bulk
averaged flow field. Kinematic and mechanical models for high-strain zones provide the relations
between prescribed tectonic boundary conditions and the resulting bulk flow field. They do not deter-
mine how structures and fabrics observed on local and small scales form. To bridge the scale gap
between the bulk flow field and minor structures, Eshelby’s formalism extended for general power-law
viscous materials is shown to be a powerful means. This paper first gives a complete presentation of
Eshelby’s formalism, from the classic elastic inclusion problem, to Newtonian viscous materials, and to
the most general case of a power-law viscous inhomogeneity embedded in a general power-law viscous
medium. The formulation is then implemented numerically. The implications and potential applications
of the approach are discussed. It is concluded that the general Eshelby formalism together with the self-
consistent method is a powerful and physically sound means to tackle large plastic deformation of Earth’s
lithosphere.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Rocks are composed of rheologically heterogeneous elements
over a wide scale range of observations. When subjected to
a tectonic deformation, the incurred flow field in the heteroge-
neous rock mass is more complex than it would be in a rheologi-
cally homogeneous material. In the latter, the flow field varies
smoothly in space and usually has a simple relationship with the
imposed boundary conditions. In the former, the flow field is more
lumpy e varying considerably from one element to another and, to
a less degree, within individual elements. As a result, the flow field
inside a rheologically distinct element does not in general bear
a simple relationship with the far-field tectonic boundary condi-
tions. This presents a major problem to geologists who use
deformation structures and fabrics on outcrop and smaller scales
(‘minor structures’ hereafter) to infer deformation boundary
conditions on the tectonic scale much larger than the structures
themselves (e.g., Simpson and Schmid, 1983; Hanmer and
Passchier, 1991).

To simplify the flow field in a heterogeneous body, the normal
continuum mechanics approach is to replace the field quantities at
a point by their averaged values over a suitable Representative
Volume Element (RVE) centered at that point (cf. Batchelor, 2000,
pp. 4e5; Ranalli, 1995, pp. 5e6; Lister and Williams, 1983; Li and
Wang, 2008, pp. 78e80). This “smoothed-out” and simpler flow
field is called the bulk or macroscopic flow field which captures the
variation of the flow on the scale greater than the RVE but has no
information for smaller (less than RVE) scale complexities in the
flow. All current models for high-strain zones, kinematic or
mechanical, are ones for the bulk flow field arising from
a prescribed boundary condition (e.g., Ramsay and Graham, 1970;
Ramberg, 1975; Ramsay, 1980; Sanderson and Marchini, 1984;
Simpson and De Paor, 1993; Fossen and Tikoff, 1993; Robin and
Cruden, 1994; Dutton, 1997; Jiang and Williams, 1998; Lin et al.,
1998; Passchier, 1998; Jiang, 2007c). Minor structures inside
natural high-strain zones however are small features compared to
the RVE and generally owe their formation to flow field variations
on scales below the RVE. Models for the bulk scale flow field cannot
be used directly to interpret minor structures.

To understand minor structures we must establish the rela-
tionship between the bulk flow field, which can be related to the
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boundary conditions, and flow fields inside individual, rheologi-
cally distinct, elements which control the development of
observed minor structures. Lister and Williams (1983) described
the deviation of the local flow field from the bulk one as “flow
field partitioning”. We need a physically sound means to govern
flow partitioning to bridge the scale gap problem highlighted
above.

From a physical point of view, flow field partitioning occurs
where there are mechanical interactions between a rheologically
distinct element and the surrounding medium. Eshelby (1957,
1959) pioneered a means to deal with such interactions for an
isolated elastic region in an infinite elastic field. His approach has
since been extended to general viscous materials, linear or power-
law, isotropic or anisotropic, and has led to the development of
a new and active discipline of continuum mechanics called
micromechanics (Mura, 1987; Nemat-Nasser and Hori, 1999; Qu
and Cherkaoui, 2006; Hutchinson, 1976; Lebensohn and Tomé,
1993). As will be shown in this paper, Eshelby’s inhomogeneity
formalism for general power-law viscous materials and the self-
consistent method (Kröner, 1961; Hill, 1965, 1966; Hutchinson,
1976; Mura, 1987; Molinari et al., 1987; Lebensohn and Tomé,
1993) provide a powerful means for tackling flow partitioning in
natural deformations.

In this contribution, I first give a complete presentation of
Eshelby’s formalism, from the classic elastic inclusion problem, to
Newtonian viscous materials, and to the most general case of
a power-law viscous inhomogeneity embedded in a power-law
viscous medium. I then implement the formulation numerically
for practical use. Mathcad worksheets are provided in the online
supplementary data for interactive numerical simulation and
result visualization. To make the paper less dependent on the
materials science literature so that the reader can follow the flow of
ideas more easily, I have reproduced some published equations in
some detail. Finally I discuss the implications and potential appli-
cations of the approach in geology. A full account of the self-
consistent formulation and its implementation will be presented
in a separate contribution.

2. Nomenclature

Throughout this paper, I will use a combination of Cartesian
tensor notation and a standard tensor/matrix notation. Tensors
are represented by bold-face letters. Fourth order tensors will be
represented by uppercase bold-face letters. As far as possible,
second order tensors will be represented by lowercase bold-face
letters. A few exceptions are made for some tensors to be
consistent with commonly used notations in earlier papers.
Scalars and scalar components of tensors are represented by italic
letters. The summation convention is assumed unless declared
otherwise whereby a repeated index represents summation over
the value of 1, 2, 3 for the index. The double contracted product of
two tensors is denoted by ‘:’. Thus the ijkl-components of A:B,
where both A and B are fourth order tensors, are AijmnBmnkl, the
ij-components of A:b, where b is a second order tensor, are
Aijmnbmn, and a:b is a scalar, aijbij. The product between 2 s order
tensors or between two matrices is denoted as ab, with
ij-components being aikbkj.

The following three fourth order unit tensors are used in this
paper:

Jijkl ¼ dikdjl; JSijkl ¼
1
2

�
Jijkl þ Jjikl

�
; JAijkl ¼

1
2

�
Jijkl � Jjikl

�
where dij¼ 1 for i¼ j and 0 for is j. The three tensors J, JS, and JA are
referred to, respectively, as the fourth order unit tensor, the fourth

order symmetric unit tensor, and the fourth order anti-symmetric
unit tensor (Li and Wang, 2008, p, 8).

a1, a2, a3, ai the semi-axes of an ellipsoid (first, second, third,
general)

A strain rate partitioning tensor (fourth order)
b1, b2, b3, b4, b5, b6, bl base set of 6 orthonormal symmetric

second-order tensors, (l ¼ 1, 2, . 6)
C, Cinh, CM elastic moduli tensor (general, of the inhomogeneity, of

the matrix medium)
C 6 � 6 matrix of the elastic moduli
dt time step for numerical computation
Daxis diagonal matrix of the strain rates for the three semi-axes

of an ellipsoid
e, eC, e*, eM, einh, ~e elastic strain tensor (general, constrained, eigen-,

in the far-field matrix medium, in an
inhomogeneity, difference between the
inhomogeneity and the far-fieldmatrixmedium)

E(q,k) elliptic integral of the second kind
3, 3

inh, 3
E

3
M, 3

0, ~3viscous strain rate tensor (general, of an
inhomogeneity, of an ellipsoid, of the matrix
medium, back-extrapolated term in tangent
linearization, difference between the ellipsoid
and the far-field matrix medium)

F(q,k) elliptic integral of the first kind
H;H

_
Hill’s constraint tensor, its inverse (also known as the
interaction tensor)

I second order unit tensor
J, JS, JA 4th order unit tensor (general, symmetric, anti-

symmetric)
J the J-integrals in calculation of Eshelby tensors
L velocity gradient tensor of matrix flow (second order)
M, MM, Minh, M(tan), M(sec) 4th order viscous compliances tensor

(general, of the matrix medium, of the
inhomogeneity, tangent, secant)

Q matrix defined by the orientation of an ellipsoid
Q angular velocity tensor of an ellipsoid
q1, f1, q2 spherical angles defining the orientation of an ellipsoid
n, nM stress exponent (general, of the matrix material)
r, reff, r0 viscosity ratio between ellipsoid and matrix medium

(Newtonian, effective where one or both the ellipsoid and
the matrix medium are power law, effective at the matrix
medium strain rate state

s, sinh, sM, ~s Cauchy stress tensor (general, in the inhomogeneity,
in the matrix medium, difference between the
inhomogeneity and the matrix medium)

S, P symmetric Eshelby tensor, anti-symmetric Eshelby tensor
T, TS, TA 4th order Green interaction tensor, symmetric Green

interaction tensor, anti-symmetric Green interaction
tensor

winh, wE, wM, ~w vorticity in an inhomogeneity, in an ellipsoid, in
the far-field matrix medium, vorticity difference
between the ellipsoid and the far-field matrix
medium

uinh, uM elastic rotation tensor in the inhomogeneity, elastic
rotation tensor in the remote matrix medium

u incremental angle of rotation
û normalized incremental angular rotation tensor

3. The interaction between an elastic inclusion/
inhomogeneity and the embedding infinite elastic medium:
the classic Eshelby formalism

Eshelby (1957, 1959) considers the elastic field of an infinite
uniform elastic body caused by a “region” he called “inclusion”
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