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a b s t r a c t

Despite the common occurrence of simple shear deformation, laboratory and numerical simulations of
folding have so far been almost exclusively in pure shear. Here we present a series of finite-element
simulations of single layer folding in simple shear up to high shear strains (g � 4, and up to 75%
shortening of the folding layer). In the simulations we vary the viscosity contrast between layer and its
surroundings (25e100), the stress exponent (1 or 3) and the kinematics of deformation (pure- versus
simple shear). In simple shear fold trains do not show a clear asymmetry, axial planes form
perpendicular to the developing fold train and rotate along with the fold train. Differences in
geometries between folds formed in simple and pure shear folds are thus difficult to distinguish
visually, with simple shear folds slightly more irregular and with more variable axial plane orientation
than in pure shear. Asymmetric refraction of an axial planar cleavage is a clearer indication of folding
in simple shear. The main effect of an increase in stress exponent is an increase in effective viscosity
contrast, with only a secondary effect on fold geometry. Naturally folded aplite dykes in a granodiorite
are found in a shear zone in Roses, NE Spain. Comparison of the folded dykes with our numerical
simulations indicates a viscosity contrast of around 25 and a stress exponent of 3. The natural folds
confirm that at this moderate viscosity contrast, a significant amount of shortening (20e30%) is ach-
ieved by layer thickening instead of folding.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Folds are very common and usually conspicuous structures in
rocks that are therefore widely used to unravel rock deformation.
They are classical indicators of shortening direction and amount
(Treagus, 1982; Hudleston, 1986; Ramsay and Huber, 1987;
Hudleston and Lan, 1993; Hudleston and Treagus, 2010 and refer-
ences therein). However, folds potentially contain much more
relevant information, for example on the kinematics of deformation
or rock properties. Viscosity or competence contrast between
a folding layer and its matrix is usually assumed to have a first order
control on fold geometry, as this contrast determines the initial
wavelength and amplification rate of developing folds (Biot, 1961;
Ramberg, 1961; Ghosh, 1966; Sherwin and Chapple, 1968; Fletcher,
1974, 1977; Smith, 1975; Johnson and Fletcher, 1994; Schmalholz
and Podladchikov, 2001). Apart from studies that focussed on fold
amplification from initial perturbations, many studies also inves-
tigated the question whether fold geometry may reveal the

rheology of folding layers and their matrix. Most studies have
focused on power-law rheology, where strain rate is proportional to
stress to the power n (Fletcher, 1974; Smith, 1975, 1977; Abassi and
Mancktelow, 1992; Mühlhaus et al., 1994; Hudleston and Lan, 1994;
Lan and Hudleston,1995; Kenis et al., 2005; Hudleston and Treagus,
2010). One problem in cases where ns 1 is that there is no single or
constant viscosity contrast. This issue will be addressed further
below. Other factors that may influence fold geometry are strain-
dependent rheology (Lan and Hudleston, 1991; Tackley, 1998;
Huismans and Beaumont, 2003; Schmalholz et al., 2005),
mechanical anisotropy (Hudleston et al., 1996; Toimil and Griera,
2007; Kocher et al., 2008) or, recently, thermal effects (Hobbs
et al., 2008; but see discussion by Treagus and Hudleston, 2009).

The kinematics of deformation can potentially also be deduced
from the analysis of folds. Folds are common structures in many
ductile shear zones, where they commonly show a strong asym-
metry that can be used as a shear sense indicator (Hudleston, 1977;
Quinquis et al., 1978; Ramsay et al., 1983; Passchier and Williams,
1996; Alsop and Holdsworth, 2006; Carreras et al., 2005).
Strongly asymmetric folds are common at very high strains in non-
coaxial deformation, where their formation has been explained
with passive shearing of existing folds (Ghosh, 1966; Cobbold and
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Quinquis, 1980; Hudleston and Lan, 1993), although active buckling
probably plays a role as well (Bons and Urai, 1996; Alsop and
Carreras, 2007). Other studies, however, indicate that non-coaxial
deformation does not necessarily produce asymmetric fold
shapes (Ghosh, 1966) and that asymmetries arise during the final
stages of fold amplification (Schmid, 2002). Several studies have
pointed out that the asymmetry of cleavage patterns associated
with folding is a better indicator of non-coaxial folding than the
fold shape itself (Manz and Wickham, 1978). These authors
observed that strain is not necessarily symmetrically distributed
about fold axial planes, and that asymmetries between the two
limbs arise in single layer simple shear experiments. In linear
viscous simple shear models, Viola and Mancktelow (2005),
however, did not observe a marked asymmetry in fold shape, but
a clear difference in refraction of a developing cleavage. A compli-
cating factor here is that layers originally oblique to the maximum
shortening direction could potentially also develop asymmetric
folds even in coaxial deformation (Treagus, 1973; Anthony and
Wickham, 1978; Viola and Mancktelow, 2005).

Apart from theoretical and field studies (e.g. Biot, 1961; Flinn,
1962; Sherwin and Chapple, 1968; Treagus, 1973, 1981; Fletcher,
1977; Ramsay and Huber, 1987; James and Watkinson, 1994;
Schmalholz and Podladchikov, 2000; Ormond and Hudleston,
2003), most of our current knowledge of fold mechanics is
derived from experiments (e.g. Ghosh, 1966; Hudleston, 1973;
Cobbold, 1975; Shimamoto and Hara, 1976; Manz and Wickham,
1978; Abassi and Mancktelow, 1992; Bons and Urai, 1996; Tikoff
and Peterson, 1998) and numerical simulations (e.g. Chapple,
1968; Dieterich, 1970; Parrish, 1973; Stephansson and Berner,
1971; Parrish et al., 1976; Shimamoto and Hara, 1976; Hudleston
and Stephansson, 1973; Anthony and Wickham, 1978; Casey and
Huggenberger, 1985; Hudleston and Lan, 1994; Lan and
Hudleston, 1995; Zhang et al., 1996, 2000; Mancktelow, 1999;
Viola and Mancktelow, 2005; Frehner and Schmalholz, 2006;
Schmid and Podladchikov, 2006; Schmalholz, 2008; Hobbs et al.,
2008; Kocher et al., 2008; etc.). By far most of the studies deal
with folding of single or multiple layers in pure shear parallel to the
maximum shortening direction. Only a few have considered
general shear or folding of a layer oblique to the maximum short-
ening direction (Anthony and Wickham, 1978; Schmid, 2002; Viola
andMancktelow, 2005). Considering that simple shear deformation
is likely to be common in the crust, a numerical study on folding in
true simple shear is long overdue.

In this paper, we present a series of numerical simulations of
folding in simple and pure shear of viscous single layers. Layers
are initially oriented oblique to the shear plane in the case of
simple shear simulations, and parallel to the compression
x-direction for pure shear models. This study aims to determine
the difference, if any, in fold patterns between the two kinematic
end-members.

2. Methods and experimental setup

2.1. The numerical model

Simulations were carried out with the software packages ELLE
(Jessell et al., 2001, 2005; 2009; Bons et al., 2008) and the finite-
element module BASIL (Barr and Houseman, 1996; Bons et al.,
1997; Houseman et al., 2008 and references therein). ELLE is an
open-source modelling platform used to simulate the development
of (micro-) structures during tectonic and/or metamorphic
processes. In ELLE, the model is defined by a contiguous set of
polygons that are defined by nodes that link straight segments
(Fig. 1). The spatial resolution of the model is constant as additional
nodes are inserted or removed when boundaries are stretched or

shortened. The spacing of nodes (set between 0.005 and 0.011, at
a model size of 1 � 1) not only determines the resolution of the
shape of the folding layer, but also determines the resolution of the
triangulation for the finite-element routine (see below). A series of
tests with different node spacings (between 0.00125 and 0.005 to
0.00275e0.011) was carried out to ensure that it did not influence
the results.

Properties can be assigned to polygons. In this case, the only
property assigned to a polygon is its viscosity (see definition
below), which is constant within a polygon and remains unchanged
throughout the simulation (no strain hardening or softening is
considered). We define a single, more competent layer with
a constant viscosity, which is embedded in a matrix with a lower
viscosity. To track the finite deformation field we use a passive
marker grid.

In our simulations the model is a unit cell that it is repeated
infinitely in all directions. For this, ELLE uses both horizontally and
vertically wrapping boundaries. A polygon that is truncated by the
right boundary thus continues on the left side. For simple shear
deformation, an initially square model remains square, which
significantly reduces the boundary effects that would arise if the
model were to shear into a parallelogram. In pure shear simulations
boundaries are also periodic, but the unit cell does not remain
square.

All simulations presented here are for the folding of a single
competent layer in a homogeneous isotropic matrix. The layer is
originally inclined with respect to the shear plane in simple shear.
The initial layer thickness is 0.025 for all simulations, 1 being the
size of the simulation bounding box in simple shear. It should be
noticed though, that due to the wrapping boundaries, the initial
model in simple shear effectively consists of multiple layers that
finally shear into a single vertical layer (see Fig. 1a).

The simulations presented below address two main questions:
(i) What is the difference in fold geometry between pure shear and
simple shear? and (ii) What is the difference between folding in
linear (n ¼ 1) and non-linear (n ¼ 3) materials? For this we varied
(a) the viscosity contrast (m ¼ 25, 50, 100), (b) the stress exponent
(n ¼ 1, 3), (c) the boundary conditions and (d) the amount of finite
shortening (Table 1):

� Horizontal dextral simple shear up to a shear strain of g¼ 2 and
g¼ 4, with a square unit cell of dimensions 1 �1. For g ¼ 2, the
folding layer was initially inclined 27� and shortened 59%,
while for g ¼ 4, it was inclined 14.0� and shortened 75%. At the
end of the simulation, the layer is oriented normal to the shear
plane.

� Vertical pure-shear shortening by 59% (starting as a
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angle) to end up with a square model of dimensions 1 �1. The
layer is oriented parallel to the maximum compression
x-direction for all deformation stages.

2.2. Finite-element method

BASIL is a 2D finite element (FEM) package that calculates non-
linear viscous deformation in plane strain (Houseman et al., 2008).
BASIL is used to compute viscous strain rates and the associated
stress fields. An incompressible, viscous constitutive law is
assumed for both folding layer and matrix. Here the deviatoric
stress tensor (sij) is related to the strain rate tensor ( _εij) with:

sij ¼ 2h_εij ¼ h
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