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a b s t r a c t

An objective method is developed for identifying the shape of the void generated by analysis of the
spatial arrangement of point distributions using the Fry method and in particular Delaunay triangulation
nearest neighbour data. The method works by numerically minimising a weighted non-linear least-
squares formulation which tends to selectively apply higher weights to points below the boundary and
less weight to points above the boundary. Sampling errors are estimated using a bootstrap procedure. A
simulation study indicates that the method works best for closely packed object arrangements and tends
to underestimate the strain axial ratio at high imposed strains. Overall the method is found to be
objective and consistent.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Geological strain analysis is an indispensable tool for unravelling
tectonic histories. Choosing a method of strain analysis is largely
guided by the presence of suitable geometrical features in the study
area typically known as strain markers. There are three categories
of strain markers (Lisle, 2010) commonly in use: 1) individual
objects or groups of objects with sufficiently known pre-strain
geometric detail, 2) collections of objects with minimal geometric
detail but whose shape may be approximated by an ellipse
(Mulchrone and Roy Choudhury, 2004), and 3) collections of
objects whosemutual spatial arrangement may be used to estimate
strain. Category 1 includes various fossils of known unstrained
geometry and the basic equations of strain can be applied to one or
more markers to determine finite strain (Ramsay, 1967; Ramsay
and Huber, 1983). Category 2 usually consists of collections of
mineral grains or sedimentary clasts etc. and a variety of methods
for analysis have been developed including the Rf/f (Ramsay, 1967),
the method of Robin (1977), the mean radial length (Mulchrone
et al., 2003), and others (Shimamoto and Ikeda, 1976; Yamaji,
2008). For successful recovery of strain estimates with categories
1 and 2 strain markers, deformation must be homogenous on the
scale of measurement and markers must have behaved passively
during deformation. Homogeneity of object/fossil morphology is

also assumed in category 1 methods and typically isotropy of initial
orientation is assumed in category 2 methods. Strain analysis with
the third category also assumes homogeneity of deformation at the
scale of the sample but importantly does not require markers to
have any particular initial orientation or shape within reason and
also does not make any make any prescription on how markers
ought to deform relative to the enclosing medium i.e. passive
behaviour is not required at the marker scale. There is also
a cautionary restriction of coaxial strain which is important only if
the data initially formed part of regular grid (Lisle, 2010). Methods
of strain analysis that work with category three data ought to be
very general and widely applicable (Ramsay, 1967, p. 195, Fry, 1979;
Hanna and Fry, 1979). There also exist other methods such anisot-
ropy of magnetic susceptibility (AMS) which measure non-visible
features and are commonly used as strain proxies (Hrouda and
Je�zek, 1999; Je�zek and Hrouda, 2002; 2007).

Methods which utilise all objecteobject separations such as
Fry’s method (Fry, 1979; Hanna and Fry, 1979), the Normalised Fry
Method (Erslev, 1988) and the enhanced Normalised method
(Erslev and Ge, 1990) are commonly used due to their simplicity,
ease of application and perhaps because they can be graphically
implemented. These methods have also been extended to work
well with irregularly shaped objects (Mcnaught, 1994). Objective
interpretation of the resulting data (i.e. fitting an ellipse to a central
vacancy) remains problematical (Erslev and Ge, 1990; Waldron and
Wallace, 2007; Lisle, 2010). The enhanced normalised method
suggests selecting a subset of the data where objects are in close
contact. This results in a set of data for which the best fit ellipsemay
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be readily calculated (Mulchrone, 2003). However this tends to
make the data converge with category two data because the
selected subset of data is sensitive to the shape of objects, thus the
benefits of processing category 3 data are lost. In addition, this may
not be useful in practice when marker objects to be processed are
far apart (Waldron and Wallace, 2007). Another approach is to
construct an elliptical annulus and then search by computer for the
annulus which maximises the difference between the point count
of the inner and outer ellipses (Waldron and Wallace, 2007).
Waldron and Wallace, 2007 also suggested a continuous function
method which seeks to minimise the number of points on one side
of the best fit ellipse. Lisle (2010) developed a method whereby the
natural dataset is undeformed for various orientations and axial
ratios until the undeformed dataset has the expected characteris-
tics of undeformed point configuration. This technique has the
additional benefit of providing information about the precision of
the result. Shan and Xiao (2011) present a statistical method of
analysis of Fry data by modelling the data with a truncated Poisson
process and formulating a maximum likelihood solution which is
numerically solved.

The alternative to using all objecteobject separations is to use
nearest neighbours only (Ramsay, 1967, p. 195) which is onerously
labour intensive in its initial formulation. However application of
techniques from computational geometry (O’ Rourke, 1993) lead to
the development of a computationally efficient Delaunay Triangu-
lation Nearest Neighbour Method (Mulchrone, 2003). In this paper
a method is introduced for determining strain from category 3
strain markers which seeks to apply high weighting to points on
the inner boundary of the central vacancy found in a Fry-type plot
resulting in a non-linear least squares minimisation problem. The
method uses data from the Delaunay Triangulation of the points
and thus the method fits into the nearest neighbour suite of
methods. Sampling errors associated with the method are readily
estimated using a bootstrap procedure. In addition to the method
results of a detailed simulation to assess the error characteristics of
the method are reported.

2. Point distributions

The rawdatarequired for theproposedmethod for theanalysis are
the centroids of the objects (Fry,1979;Mulchrone, 2003) and for nor-
malisationpurposes the average radius (¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rmaxrmin
p

for anelliptical
object, where rmax, rmin are the long and short axes respectively). If
average radius data are unavailable then assigning the value of 1/2 to
every data point means that the normalisation step is effectively
ignored.Therearetwofundamentalassumptionsmadebyallmethods
of strain estimation using point distributions: 1) an anticlustered
initialdistributionofobjectsand2)thesamepointsetcanbeidentified
beforeandafterdeformation.Objectdistributionswith these features
canbereadilygeneratedusingthesimplesequentialinhibitionprocess
described in section 4.2 ofMulchrone (2003).

In its original conception (Fry, 1979) and owing to its graphical
implementation, the data to be analysed consisted of all objecte
object separations e this is referred to as the Fry distribution (see
Fig. 1(a) and (b)). Another possible distribution for analysis consists
of the distribution of nearest neighbours whereby the set of points
is made up of the one nearest neighbour to each point in the
distribution thus resulting in one data point per analysed object
(this is referred to as the Nearest Neighbour distribution, see
Fig. 1(c) and (d)). Each of these distributions has difficulties asso-
ciated with it. The Fry distribution contains excessive data because
the central void is defined by a subset of data relating mainly to
objects which are close together. Therefore most of the data which
relates to far apart objects is redundant and tends to slow down
computational approaches. On the other hand the Nearest

Neighbour distribution is at the other extreme and tends to be
overly sparse. This sparsity tends to be accentuated with increasing
strain because the points aligned close to the direction of maximum
stretching tend not be the nearest neighbour (see Fig. 1(d)). The
preferred subset of data used in this contribution is the set of
pairwise points defined by the Delaunay Triangulation (Mulchrone,
2003) and is referred to as the Delaunay Triangulation Nearest
Neighbour (DTNN) distribution. This dataset tends to be of
a manageable size and the central void continues to be well defined
even after considerably large imposed strains (see Fig. 1(e) and (f)).

2.1. Selecting distribution parameters

In order to test the effectiveness of the proposed method of
analysis it will be necessary to choose simulation parameters
appropriately. There are fivemain interrelated parameters that may
be controlled: packing density (pd, which is the ratio of the area
comprised by the object to that of the total area), number of objects
(n), the distribution of radii of those objects from some minimum
(a) to some maximum (b) and finally the size of the area enclosing
the objects to be analysed. For simplicity it is assumed that the
containing area is squarewith edge size given by l. These factors are
geometric in nature and others such as point distribution type,
normalisation etc. are separate and considered later.

The packing density is the ratio of the sum of all object areas to
that of the containing area. Suppose we generate a distribution of
circular objects each with radius r then the total area of the objects
is

Pn
i¼1 pr

2. In practice objects have a variable radius which is
modelled here as a random selection from a uniform distribution
between a and b. The probability of each radius in the interval is
equal and given by 1/(b�a). The mean or expected value of the area
of such a collection of objects is calculated by evaluating the
following integral:

Zb
a

pr2

b� a
dr ¼ p

3

�
a2 þ abþ b2

�

For simplicity let a ¼ kb, 0 < k � 1, hence the expected area of
a collection of n objects is np=3ð1þ kþ k2Þb2. Notice that the
smaller the value of k the more variability in the distribution of
radii. Hence

pd ¼ np
3l2

�
1þ kþ k2

�
b2

or more usefully

b2 ¼ 3l2pd
np

�
1þ kþ k2

�
Thus by first choosing the required values of n, pd, l, and k, the

appropriate value of b is calculated.
There is a complicationassociatedwith this approach tochoosing

appropriate parameter values because in addition to selection from
a uniform distribution there is also a further selection effect due to
the simple inhibition process. This tends to modify the uniform
distribution of object radii into a right skewed distribution con-
taining more objects of smaller radius than objects with larger
radius (see Fig. 2). The principal difficulty is that the number of
circular objects generated tends to be greater than that requested.
However, simulations indicate that there is a consistency in the
number of objects generated for a particular choice of parameters
and the effect is pronounced only in the case of low k (i.e. high radii
variability) and low pd. In other words, it is still possible to exert
some control the number of objects generated in a simulation.
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