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HIGHLIGHTS

« COP based on thermal input increases with booster outlet pressure.

« Both entrainment ratio and area ratio increase with booster outlet pressure.
« COP based on work is larger than compressor-based refrigeration system.

« An optimum booster outlet pressure obtains maximum COP based on work.

« Exergy destruction occurs mainly in ejector, condenser, evaporator and generator.
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In order to improve performance of ejector refrigeration system, a booster is added before an ejector to
enhance secondary flow pressure, which is called a booster assisted refrigeration system. Based on mass,
momentum and energy conservation, a 1D model of ejector for optimal performance prediction was pre-
sented and validated with experimental data. A detailed study of working characteristics of the booster
assisted ejector refrigeration system was carried out and compared against conventional ejector refriger-
ation system and compressor based refrigeration system, on the basis of first and second laws of thermo-
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Refrigeration system input, and also on entrainment ratio and area ratio of ejector were studied. The exergy destruction rates
COP were also computed and analyzed for components of the booster-assisted ejector refrigeration system.
Booster Ways to reduce exergy destruction were discussed.
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1. Introduction

Compressor based Refrigeration System (CRS) is most widely
used in air conditioning and refrigeration. Conventional Ejector
Refrigeration System (ERS) is similar to CRS except that the com-
pressor is replaced by an ejector and a generator is used to provide
driving force through heat input, as shown in Fig. 1.

Ejector Refrigeration System (ERS) is a promising way to utilize
sustainable energy like solar energy, geothermal energy, and low
grade heat energies, which are easily available from sources such
as automobiles and industrial processes [1-4]. However, the low
Coefficient of Performance (COP) of ejector systems in comparison
to mechanical compression systems is considered a barrier, but a
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gradual increase was seen with the development of ejector
refrigeration technology (COP up to 0.689) [1-3].

Since the early 50 s, numerous studies have been carried out to
improve the understanding of ejector processes and performance.
Keenan and Neumann [5] introduced a constant-pressure mixing
model and a constant-area mixing model. Munday and Bagster
[6] further developed the constant-pressure mixing model by
assuming that the primary fluid fans out without mixing with
the secondary fluid immediately after discharging through the noz-
zle exit, which forms a “hypothetical -throat” for the entrained
fluid. Later, Eames et al. [7] studied a small-scale steam jet refrig-
erator and built a model capable to predict 85% of the experimental
data. Huang et al. [8] performed a 1D analysis of ejector perfor-
mance by assuming double-choking before mixing for both pri-
mary flow and secondary flow. They also pointed out that 1D
analysis could be treated as semi-empirical because all the ejector
efficiencies were based on experience. Zhu et al. [9] proposed a 2D
exponential expression for velocity distribution to approximate the
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Nomenclature

A; cross section area of ejector nozzle throat
Am cross section area of ejector mixing chamber
Ar area ratio

cop coefficient of performance

speed of sound (ms™')
specific enthalpy (k] kg™!)
Mach number

pressure (kPa)

quantity of heat (kW)

gas constant (k] k™! K1)
specific entropy (k] kg™' K1)
temperature (°C)

velocity (ms™1)

power (kW)

s: e mQOoTE SO

Greek letters
n coefficient of isentropic efficiency
K gas specific heat ratio

o refrigerant density
Om mixing loss factor
w entrainment ratio
Subscripts

b booster

c condensation

e evaporation

g generator

p pump

sat saturation

S isentropic

t throat

th thermal

w work

1-11 state points

viscosity flow near the ejector inner wall, by introducing a “shock
circle” at the entrance of the constant area chamber. An ejector
model for evaluating the optimum performance of an ejector
refrigeration system was proposed by Chen et al. [10] by taking
into consideration the mixing pressure and the shock process.
Chen et al. [11] also carried out a detailed investigation of ejector
working characteristics by using R141b, R245fa and R600a.
A global state-space modeling approach was adopted by Xue
et al. [12] for dynamic response and real time control of ejector
refrigeration system in a simpler form.

All the aforementioned research are mainly about ejector mod-
eling, and many investigations of enhanced ejector refrigeration
cycles and their combination with other thermodynamic cycles
were also carried out to improve system performance. Sokolov
and Hearshgal [13] proposed three compression enhanced ejector
refrigeration cycles: (1) booster assisted ejector cycle; (2) hybrid
compressor and ejector cycle; (3) combined booster, compressor
and ejector cycle. Yu et al. [14] proposed a new ejector refrigera-
tion system with an additional liquid-vapor jet pump added
between ejector and condenser to reduce back pressure of ejector.
Later on Yu and Li [15] proposed another ejector refrigeration
system by applying mechanical-subcooling with an additional
liquid-gas ejector in the system to improve system performance.
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Fig. 1. Conventional ejector refrigeration system (ERS).

Yu et al. [16] also proposed a regenerative ejector refrigeration
cycle with COP improvement from 9.3% to 12.1%. Zhu and Jiang
[17] proposed a hybrid vapor compression refrigeration system
with an ejector cooling cycle driven by waste heat from condense
to improve system COP by 9.1%. Yan et al. [ 18] conducted an exper-
imental study on a combined ejector-vapor compression cycle con-
nected via a subcooler with relatively high COP improvements
(15.9-21.0%). A hybrid A/C system composed of an ejector refriger-
ation cycle and a compressor based refrigeration cycle driven by
automobile exhaust waste heat was conceived by Wang et al.
[19]. Results showed that the hybrid system can significantly
enhance the performance of the automobile A/C systems (35.2-
40%). Habibzadeh et al. [20] proposed a thermal system which
combines an organic Rankine cycle and an ejector refrigeration
cycle using different working fluids. The above studies prove that
ejector refrigeration cycle combined with other thermo-cycles will
be a good way to achieve performance improvement.

Originally proposed by Sokolov and Hearshgal [13], a
schematic diagram of the Booster-assisted Ejector Refrigeration
System (BERS) is shown in Fig. 2. Compared with ERS in Fig. 1,
a booster is added before the ejector to enhance the pressure of
secondary flow. In Fig. 3, P-H diagrams for both ERS and BERS
are sketched.
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Fig. 2. A booster-assisted ejector refrigeration system (BERS).
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