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a b s t r a c t

For 2D linear viscous flow, it is shown that the rates of rotation and stretch of an isolated elliptical
inclusion with a coaxial elliptical rim are fully determined by two corresponding scalar values. For
power-law viscosity, effective viscosity ratios of the inclusion and rim to the matrix depend on orien-
tation and the system is more complex but, in practice, the simplification with two scalar values still
provides a good approximation. Finite-element modelling (FEM) is used to determine the two charac-
teristic values across a wide parameter space for the linear viscous case, with a viscosity ratio (relative to
the matrix) of the inclusion from 106 to 1, of the rim from 10�6 to 1, axial ratios from 1.00025 to 20, and
rim thicknesses relative to the inclusion axes of 5 to 20%. Results are presented in a multi-dimensional
data table, allowing continuous interpolation over the investigated parameter range. Based on these
instantaneous rates, the shape fabric of a population of inclusions is forward modelled using an initial
value Ordinary Differential Equation (ODE) approach, with the simplifying but unrealistic assumption
that the rim remains elliptical in shape and coaxial with respect to the inclusion. However, comparison
with accurate large strain numerical experiments demonstrates that this simplified model gives quali-
tatively robust predictions and, for a range of investigated examples, also remarkably good quantitative
estimates for shear strains up to at least g ¼ 5. A statistical approach, allowing random variation in the
initial orientation, axial ratio and rim viscosity, can reproduce the characteristic shape preferred orien-
tation (SPO) of natural porphyroclast populations. However, vorticity analysis based on the SPO or the
interpreted stable orientation of inclusions is not practical. Varying parameters, such as inclusion and rim
viscosity, rim thickness, and power law-exponents for non-linear viscosity, can reproduce the range of
naturally observed behaviour (e.g., back-rotation, effectively stable orientations at back-rotated angles,
a cut-off axial ratio separating rotating from stable inclusions) even for constant simple shear and these
features are not uniquely characteristic of the vorticity of the background flow.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Inclusions in deformed rocks have been extensively studied
because they provide potential markers for determining the kine-
matics of flow and the amount of deformation. The simplest
examples to measure and analyse are those with an approximately
elliptical cross-section in the plane of observation, for which an
axial ratio and orientation are readily defined. Appropriate
analytical solutions exist for the stretch and rotation of cylinders
with elliptical cross-sections in 2D and ellipsoids in 3D if the
materials are linear elastic or linear viscous and if the interface
between inclusion and matrix is coherent (Muskhelishvili, 1953;
Eshelby, 1957, 1959; Bilby et al., 1975, 1976; Bilby and Kolbuszewski,

1977; Schmid and Podladchikov, 2003; Mulchrone and Walsh,
2006; Jiang, 2007, 2012). However, natural observations on inclu-
sion systems in many cases are not in good agreement with the
predictions of these analytical solutions (e.g., Pennacchioni et al.,
2001; ten Grotenhuis et al., 2002, 2003; Johnson et al., 2009) and
clearly another factor must have a significant influence. It has been
proposed that this may be the effect of an imperfectly bonded or
slipping boundary (Ildefonse and Mancktelow, 1993; Arbaret et al.,
2001; Marques and Coelho, 2001; Pennacchioni et al., 2001; Ceriani
et al., 2003; Marques and Bose, 2004; Schmid and Podladchikov,
2004, 2005; Marques et al., 2005a; Johnson et al., 2009). It is this
effect that is analysed here, using the basic 2D geometry of an
isolated inclusion of elliptical cross-section with a thin, initially
elliptical and coaxial weaker rim, embedded in an effectively
infinite matrix. Rotation and stretching rates are only determined
for the stronger inclusion and not for the surrounding rim, whichE-mail address: mancktelow@erdw.ethz.ch.
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with increasing strain can deform into quite complex shapes. The
flow is taken to be slow (laminar flow at low Reynolds number) and
the rheology of all three components (inclusion, rim and matrix) to
be homogeneous, isotropic, incompressible and linear viscous, with
the effect of non-linear (power-law) viscosity investigated for
specific examples.

Published work, especially that of Schmid and Podladchikov
(2005) and Johnson et al. (2009), already covers aspects of the
behaviour, but the system has not been fully analysed and studies
were largely restricted to the end-member case of a very strong or
strictly rigid inclusion. Here a very wide range of parameters is
considered for the deformable linear viscous case (viscosity ratio of
inclusion to matrix from 106 to 1, viscosity ratio of rim to matrix
from 10�6 to 1, axial ratios from 1.00025 to 20, rim thickness
relative to the inclusion axes from 5 to 20%). Analytical consider-
ations combined with symmetry arguments allow the problem to
be simplified to the determination of two scalar parameters.
However, no analytical solution is currently available to determine
these parameters and the approach here is numerical, using finite-
element modelling (FEM). A multi-dimensional data grid is devel-
oped to summarize the numerical results and to allow interpolation
of the instantaneous stretching and rotation rates continuously
across this very wide range of geometries and relative viscosity
values. The data grid is provided in the Supplementary material,
together with MATLAB scripts necessary to generate the figures
presented in this paper. Using an initial value Ordinary Differential
Equation (ODE) approach, interpolation of the instantaneous rates
also allows the progressive stretch and rotation of a rimmed
elliptical inclusion in 2D viscous flow to be determined and plots of
axial ratio against orientation (Rf/j plots) for populations of inclu-
sions to be generated. Plots with a pre-defined statistical variation
in the controlling parameters can be directly compared to
measurements of natural populations of inclusions in deformed
rocks (Pennacchioni et al., 2001; Mancktelow et al., 2002; Johnson
et al., 2009), for which the parameters are also likely to vary for the
population as a whole. Predictions from this relatively simple
model for individual inclusions are also compared to large strain
numerical models inwhich the rim is deformed into more complex
shapes similar to those observed in natural mantled porphyroclast
systems (e.g., Passchier and Simpson, 1986; Passchier and Sokoutis,
1993; Passchier and Trouw, 2005).

2. Previous work

A summary of the quite extensive previous work on isolated
inclusions with coherent boundaries is already given for the 2D
case in Mancktelow (2011) and for 3D in Jiang (2007, 2012). An
important result of Eshelby (1957) is that the stress and strain
within a homogeneous elliptical (2D) or ellipsoidal (3D) inclusion
embedded in a linear elastic matrix is uniform if the far field strain
is uniform. The inclusion will therefore maintain its elliptical or
ellipsoidal shape during deformation. Through the correspondence
principle (e.g., Biot,1965), Eshelby’s result can be directly translated
to linear viscous rheology (e.g., Bilby and Kolbuszewski, 1977;
Schmid and Podladchikov, 2003). Extension of this work has shown
that inclusions of more general rheology also deform homoge-
neously, provided they are embedded in a linear viscous matrix
(Goddard and Miller, 1967; Roscoe, 1967; Bilby and Kolbuszewski,
1977; Schmid and Podladchikov, 2003; Mancktelow, 2011).
However, this is not true when (1) the matrix is non-linear (e.g.,
Gilormini and Montheillet, 1986; Gilormini and Germain, 1987;
Gilormini andMichel,1998), (2) the inclusion is imperfectly bonded
to the matrix (e.g., Mura et al., 1985; Tsuchida et al., 1986; Mura,
1987; Hashin, 1991; Gao, 1995; Shen et al., 2001; Xu et al., 2011),
or (3) the elliptical inclusion is surrounded by a rim or “mantle” of

different material (e.g., Kenkmann, 2000; Schmid and
Podladchikov, 2004, 2005).

Schmid and Podladchikov (2004) proposed that the rotational
behaviour of a rigid inclusion with a very weak rim is conceptually
equivalent to that of a void of constant shape. Based on their earlier
analytical solution for an isolated deformable viscous inclusion
(Schmid and Podladchikov, 2003), the rotation rate of a rigid
inclusion with an incoherent boundary embedded in an infinite
linear viscous matrix undergoing slow simple shear flow at shear
strain rate _g was given as

_j
_g
¼ �sinðjÞ2Rþ 1

R
þ 1
2R

; (1)

where R is the axial ratio of the inclusion, and j is the angle of the
long axis of the inclusion to the shear direction. This equation can
be recast in double angles as
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2
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�
: (2)

Mulchrone (2007) developed an alternative analytical solution
for the rotation rate of a rigid inclusion with a slipping interface,
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�
; (3)

reformatted to use the same symbol conventions as in Eqs. (1) and
(2). Setting the viscosity ratio of inclusion to matrix equal to zero in
the more general solutions of Bilby and Kolbuszewski (1977) (e.g.,
Eq. (27) in Mancktelow, 2011) immediately establishes that Eq. (3)
is identical to the solution for the rotation rate of an incompressible
void (i.e., one that changes shape but not area). The conceptual
models attributable to Eqs. (2) and (3) are therefore distinctly
different. The result of Mulchrone (2007) implies that the rotation
rate of a rigid inclusion with a slipping interface is identical to that
of an incompressible but deformable void, whereas that of Schmid
and Podladchikov (2004) corresponds to a rigid or “equivalent
void” that is not allowed to change its shape. However, in practice
the numerical experiments of Schmid and Podladchikov (2004,
2005) modelled the geometry as shown in Fig. 1, for which the rim
is deformable. For this geometry, Johnson et al. (2009)

Fig. 1. 2D cross-sectional geometry of the rimmed inclusion system. The rim consists
of the zone between the elliptical inclusion and a concentric and coaxial ellipse with
the same axial ratio R but larger axes: a 10% rim (as shown) corresponds to axes for the
outer ellipse that are 1.1 times the axes of the inclusion ellipse. The inclusion and rim
are cylindrical in the third dimension.
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