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a b s t r a c t

A paleo-data compilation with 492 d13C and d18O observations provides the opportunity to better sample
the Last Glacial Maximum (LGM) and infer its global properties, such as the mean d13C of dissolved
inorganic carbon. Here, the paleo-compilation is used to reconstruct a steady-state water-mass distri-
bution for the LGM, that in turn is used to map the data onto a 3D global grid. A global-mean marine d13C
value and a self-consistent uncertainty estimate are derived using the framework of state estimation (i.e.,
combining a numerical model and observations). The LGM global-mean d13C is estimated to be
0.14‰ ± 0.20‰ at the two standard error level, giving a glacial-to-modern change of 0.32‰ ± 0.20‰. The
magnitude of the error bar is attributed to the uncertain glacial ocean circulation and the lack of
observational constraints in the Pacific, Indian, and Southern Oceans. To halve the error bar, roughly four
times more observations are needed, although strategic sampling may reduce this number. If dynamical
constraints can be used to better characterize the LGM circulation, the error bar can also be reduced to
0.05 to 0.1‰, emphasizing that knowledge of the circulation is vital to accurately map d13C in three
dimensions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Carbon-13 to carbon-12 ratios (i.e., d13C) can chemically
fingerprint different carbon reservoirs, and thus glacial-interglacial
changes in d13C of oceanic dissolved inorganic carbon (i.e., d13CDIC)
reflect the carbon partitioning between terrestrial, atmospheric,
and marine reservoirs. Dramatic environmental changes during the
Last Glacial Maximum (LGM, 23,000 to 19,000 years before pre-
sent) altered the terrestrial biosphere, and some of the low isotopic
signature of terrestrial carbon (d13C z �25‰) was transferred to
the glacial ocean, consistent with observations of benthic forami-
niferal d13C lower than the modern-day (e.g., Shackleton, 1977;
Curry et al., 1988; Duplessy et al., 1988). The glacial atmosphere
held approximately 170 gigatons (Gt) less carbon (e.g., Monnin
et al., 2001), leaving the ocean as the most readily available
source of compensation for the other two reservoirs. Pollen records
and vegetation models that more directly reflect terrestrial carbon
change yield higher estimates of glacial-to-modern carbon transfer
(e.g., 750e1900 Gt C, Crowley,1995; Adams and Faure,1998; Kaplan

et al., 2002) than the marine-based estimates (e.g., 330e650 Gt C,
Shackleton, 1977; Curry et al., 1988; Duplessy et al., 1988; K€ohler
et al., 2010), although an inert terrestrial carbon pool may recon-
cile the difference (Ciais et al., 2012). A recent compilation of
benthic Cibicidoides spp. d13C has nearly twice the data points of
previous compilations and coverage of the Atlantic, Pacific, and
Indian Oceans (Peterson et al., 2014), and thus motivates the re-
investigation of the marine-based whole-ocean d13C estimates.

Determining the mean value of a spatially-distributed tracer
field reduces to a linear operation inmost cases (i.e., an inner vector
product):

c ¼ wTy þ c0 ¼
XN
i¼1

wiyi þ c0 (1)

where c is the global mean value of a tracer c, w is a vector of
weights with wi for the ith element, T is the vector transpose, y is a
vector containing N observations of yi, and c0 is a constant included
for full generality. If all observations are assumed to contain equal
information about the global mean and no other information is
available (i.e., c0 ¼ 0Þ, the optimal weights would all be 1/N, and
Equation (1) reverts to the basic sample mean. This assumption is
invalidated if there are differing noise levels in the measurements.
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The sparse, irregularly-spaced nature of glacial observations also
invalidates this assumption, of course. Originally, paleo-
ceanographers best dealt with this issue by choosing cores from
what was thought to be the most representative oceanic regions
(e.g., Shackleton, 1977). As more data became available, basin-wide
or regional means were computed as a preliminary step before
global averaging (e.g. Curry et al., 1988; Boyle, 1992; Matsumoto
and Lynch-Stieglitz, 1999; Peterson et al., 2014). This multi-step
process naturally leads to non-uniform weights on the observa-
tions in Equation (1).

When the global-mean oceanic d13CDIC is computed as a suc-
cession of sub-averages, the result may be sensitive to the size and
location of the chosen sub-domains, and only by producing d13CDIC
maps at higher spatial resolutionwill this sensitivity be reduced. The
distance between LGM observations, however, is often greater than
the decorrelation lengthscale of oceanic property fields, and thus
the typical method of “objectively”mapping the observations onto a
regular grid (e.g., optimal interpolation or objective mapping,
Bretherton et al., 1976) reverts to a first-guess estimate in many
locations. In other words, large regions of the LGM ocean would be
unconstrained by the data, especially at intermediate depths where
little core coverage is available. Furthermore, the objectively-
mapped estimate will leave local extrema in the estimated tracer
field around the data points. Such features are undesirable because
they are not physically sustainable in equilibrium when diffusion
has sufficient time to act (e.g., for atmospheric momentum, Hide,
1969). It is not clear, however, how equilibrated the glacial ocean
was and whether eddy processes can be accurately modeled as a
diffusive process. Computation of an accurate global mean is chal-
lenging even for modern-day cases, such as sealevel rise (e.g.,
Wunsch et al., 2007). A newmethod is needed to create a map with
sparse LGM observations that addresses these complications.

Here we suggest that a method originally developed for esti-
mating the oceanic water-mass distribution from sparse observa-
tions (Gebbie, 2014) is also well-suited to make three-dimensional
global maps. Specifically, we combine a tracer transport model
(Section 2.1) with observations (Section 2.2) to produce an LGM
state estimate. Rather than using the assumed statistics of circu-
lation lengthscales, like optimal interpolation, we illustrate that the
circulation itself can be used to make a gridded field (Section 2.3).
The numerical model serves a dual purpose: 1) a means to readily
interpret the sources, sinks, and pathways of tracer, and 2) a ki-
nematic interpolator and extrapolator that allows large-scale in-
formation to be extracted from the observations. Here we extend
the state estimation framework by deriving a self-consistent for-
mula for the global-mean uncertainty (Section 2.4).

This work has two major results: 1) an estimate of the LGM
global-mean d13CDIC, and 2) its uncertainty within a explicit set of
assumptions. To connect these results to deglacial climate dy-
namics and the carbon cycle, we reconstruct a global map of LGM
d13CDIC and detect a largescale, coherent pattern of LGM-to-modern
changes (Section 3). The glacial-mean d13CDIC uncertainty is
partially attributed to the sparsity and measurement error in the
observations, but also due to the difficulty in accurately modeling
the LGM circulation (Section 4). Our results are discussed in the
context of previous observational techniques (Section 5), especially
how the observational weights in the averaging Equation (1) are
modified by the assumed circulation regime. We conclude by
emphasizing the importance of circulation knowledge in the goal of
further reducing the global-mean d13CDIC uncertainty (Section 6).

2. Global LGM state estimate

The global LGM state estimate is produced by combining a ki-
nematic tracer transport model with a global array of benthic

foraminiferal observations of d13C and d18O. Global, three-
dimensional gridded distributions are produced for multiple
tracers: d13CDIC, seawater d18O (i.e., d18Ow), potential temperature,
practical salinity, and phosphate. The model, observations, and
state estimation method are detailed next.

2.1. Model

The model is a statistically steady-state conservation equation
that is assumed to hold for, C, a general tracer: V,ð F!CÞ ¼ Q , where
F
!

is the mass flux and Q is a local source or sink. In the statistical
steady state, any temporal variability that has a net diffusive or
advective effect is represented by the model used here.

In practice, themodel equations are discretized on a global, three-
dimensional grid. Here the grid is defined with 4

� � 4
�
horizontal

resolution and 33 vertical levels with enhanced resolution near the
surface. Glacial ocean computations are undertaken on the same grid
as a modern-day reference case, but gridcells shallower than 120 m
modern-day water depth are discarded due to the sealevel drop.
After discretization, the equations are normalized by the sum of all
mass fluxes into the gridcell, fi ¼

PN
j¼1fij, where fij is the flux from

gridcell j to i, and there are N neighboring gridcells. Then the tracer
transport equation at gridcell i becomes more similar to a water-
mass mixing model (following Gebbie and Huybers, 2012):

XN
j¼1

mijcj � ci ¼ qi (2)

where mij is the ratio of the inward flux from j to the total flux
(mij ¼ fij/fi), ci is the tracer concentration in cell i, and qi is the
equilibrium tracer source with units of the tracer concentration
itself (qi ¼ Q/fi). For conservative tracers, the source and sink
vanishes (Q ¼ 0). These algebraic manipulations lead to a well-
conditioned set of equations that can be solved quickly, but with
the tradeoff that information is lost regarding the absolute rate of
circulation.

The isotope variables, d13CDIC and d18Ow, require some further
consideration. In particular, the sink of d13CDIC due to reminerali-
zation is assumed to be equal to �0.95‰/(mmol/kg) times the
source of remineralized phosphate, which is adjusted relative to the
modern ratio of �1.1‰/(mmol/kg) due to changes in whole-ocean
d13CDIC and upper-ocean biological fractionation (e.g., following
Broecker and Maier-Reimer, 1992). Here we model the ratio (delta
value) rather than the individual isotopes which incurs an error
(e.g., Walker, 1991), but it is small because the 18O/16O ratio in
Vienna Standard Mean OceanWater (VSMOW) standard is about 1/
500, and the 13C/12C ratio in the Vienna Pee Dee Belemnite (VPDB)
standard is about 1/90. Furthermore, this error is damped in the
vicinity of observations by the formal data constraints.

For reasons that should become clear below, the state vector, x,
is defined to contain both tracer and circulation information, i.e.,
xT ¼ [c;m]T, where c is a vector that represents all of the global
three-dimensional tracer distributions and m describes the circu-
lation by concatenating all of the mass-flux ratios, mij (e.g., Gebbie
and Huybers, 2010). This state vector definition is not unique, but it
provides sufficient information to permit a steady-state tracer
distribution to be computed, and thus is an acceptable definition of
the state. All of the tracer transport equations are combined and
symbolically represented as: L ½x� ¼ qþ v, where L is a nonlinear
operator due to the multiplication of the tracer concentration and
flow field that encapsulates advective and diffusive processes, and v
is the source deviation from the modern-day first-guess field, q.
The model equation includes surface concentration (i.e., Dirichlet)
boundary conditions for completeness.
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