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a b s t r a c t

Accurate estimates of the timing of extinctions (q) are critical for understanding the causes of major die-
off events and for identifying evolutionary or environmental transitions. Yet many studies have
demonstrated that sampling biases and underlying statistical assumptions affect the accuracy of model-
based estimates of extinction times (bq), and the added uncertainty contributed by inherent (laboratory)
dating errors has largely been neglected. Here we provide a general guide (model-selection key) for
choosing from among eight alternative ‘frequentist sampling’ (i.e., non-Bayesian) methods, differentiated
by their treatment of both the probability of record occurrence and uncertainties in record dates, the
most appropriate for a given record. We first provide a methodological framework to characterize time
series of dated records as a function of the number of records, the size of the interval between successive
records, and laboratory dating errors. Using both simulated data and dated Australian megafauna re-
mains, we then assess how the characteristic of a dataset's time series dictates model performance and
the probability of misclassification (false extant vs. false extinct). Among the four classic frequentist
methods providing highest model performance, Marshall's (1997) and McCarthy's (1998) methods have
the highest model precision. However, high model performance did not prevent misclassification errors,
such that the Gaussian-resampled inverse-weighted McInerny (GRIWM) approach is the only method
providing both high model accuracy and no misclassification issues, because of its unique down-
weighting interval procedure and its ability to account for uncertainties in record dates. Applying the
guideline to three time series of extinct Australian species, we recommend using Marshall's, McCarthy's
and/or GRIWM methods to infer q of both Thylacinus sp. and Genyornis sp., because each dataset is
characterized by many sightings and a low variance of the interval between records, whereas McInerny's
method better suits Diprotodon sp. due to an even lower interval variance.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Mass extinction events, characterized by palaeontologists as
high, planetary-wide species loss within a short geological time
frame (e.g., over 75% of species within less than two million years,
Barnosky et al., 2011), completely changed the global pattern of
species distribution by both removing lineages and triggering

evolutionary opportunities (Jablonski, 2001). However, the causes
and mechanisms of mass extinctions, such as the end-Permian
mass extinction (Grice et al., 2005; Payne and Clapham, 2012;
Sun et al., 2012; Wang et al., 2014) or the late Quaternary mega-
fauna extinction, are still debated by scientists from disciplines
spanning palaeontology to archaeology and ecology (Alroy, 2001;
Brook and Bowman, 2002; Barnosky et al., 2004; Lorenzen et al.,
2011), in large part because of inaccuracy of inference of the
timing of a species' extinctions (q) (Flannery, 2002). Robust and
accurate inferences are essential to test, for example, the evidence
that the end-Permian transition was abrupt versus having multiple
extinction phases (Jin et al., 2000; Song et al., 2013; Wang et al.,
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2014), or that megafauna extinction was primarily climate- or
human-driven in South America (Johnson et al., 2013; Lima-Ribeiro
and Felizola Diniz-Filho, 2013) and Australia (Brook and Bowman,
2002; Wroe et al., 2013).

The megafauna extinction stalemate in particular persists pri-
marily because the estimated timing of these species' extinctions
(bq) is uncertain due to the variable quality of the dated precursor
fossil specimens, meaning that debates digress to matters of
opinion rather than accurately measured phenomena and scientific
hypothesis testing (Brook et al., 2013). Although quality fossil data
are essential to improve our inferences of past extinctions, palaeo-
ecological archives are inherently incomplete and geochronological
dating methods are characterized by errors of centuries to
millennia, so the reliability of q inference based only on their scant
information remains a major challenge. The absence of a species in
a particular site or temporal window does not necessarily mean it
was not present, so apparent declines of taxa in these recordsmight
simply reflect sampling artefacts rather than real trends in diversity
(Prideaux et al., 2007). Such absences might also arise for tapho-
nomic reasons (i.e., type of facies and sedimentary environments
that can prevent the preservation of remains), life-history traits
(e.g., taxa from lower trophic levels, because they are more abun-
dant, have a relatively higher potential for fossilization) and
ecological specialization (i.e., specialists living in a specific habitat
will have their remains fossilised only there, whereas generalists
will have an overall higher probability of being recorded). Evidence
from extinctions observed in modern times suggests that as a
doomed species approaches its final extinction date, population
size tends to decrease exponentially due to the synergistic feed-
backs (Brook et al., 2008) that lead to the extinction vortex (Fagan
and Holmes, 2006), which reduces the probability of discovering
fossil records near the terminal date and artificially truncates the
true temporal range of a species' persistence window (Signor-Lipps
effect; Signor and Lipps, 1982). Moreover, fossil records e retrieved
from specific sites where the rare phenomenon of preservationwas
possible e only describe local losses of species such that the last
date known cannot necessarily testify to a global extinction. Indeed,
in some cases apparent disappearances can be followed by the
subsequent reappearance of the species after further sampling (the
‘Lazarus’ effect; Keith and Burgman, 2004).

As population size tends to decline to incrementally lower
densities prior to extinction (Fagan and Holmes, 2006), it is logical
to assume that the last dated record of a species occurs sometime
before its true extinction (i.e., the death of the last individual).
Based on this assumption, many probabilistic methods (also called
“classical frequentist methods”, Alroy, 2014) have been developed
to provide a confidence interval around bq given a particular time
series of occurrence records, but uncertainties in dating techniques
(e.g., inherent laboratory errors in radiometric dating), and the
probability of sampling reliably dated specimens (i.e., sampling rate
and location) make inference complex. For example, Roberts and

Solow (2003) applied an optimal linear estimation method based
on a record of historical sightings of the dodo (Raphus cucullatus) to
determine the confidence interval surrounding its true extinction
year. That method was extended to account explicitly for error in
estimates of the record date for fossils (Solow et al., 2006), but
comparisons within and among species were still difficult due to
variation in sampling rates that can affect model performance
(Rivadeneira et al., 2009). McInerny et al. (2006) proposed another
frequentist-probabilistic method that incorporates sampling rate,
which was further modified by Bradshaw et al. (2012a) to take into
account the number and uncertainty of dates in the time series.

Each method is characterized by a set of statistical assumptions
conditioning its adequate application to a given time series (e.g.,
sampling probability uniformly distributed and independent, or
dating error being constant; Table 1 and Solow et al., 2006), which if
violated, can lead to the misclassification of a species as extinct or
extant (so-called Type I and II statistical inference errors, respec-
tively; Brosi and Biber, 2008; Jari�c and Ebenhard, 2010; Fisher and
Blomberg, 2012). In addition to methodological issues, the quality
(number of records, record interval, variation in dating error over
time) and the reliability of the datasets used to infer q (e.g., species
misidentification e Rasmussen and Prys-Jones, 2003; an erroneous
ceiling on apparent dates due the time limit of radiocarbon [14C]
dating validity e Walker, 2005) also strongly affect model perfor-
mance (Rivadeneira et al., 2009; Solow et al., 2011; Bradshaw et al.,
2012a; Lee et al., 2014). Various classical frequentist methods have
been tested and validated as a function of both the number of re-
cords and sampling intensity (Rivadeneira et al., 2009; Fisher and
Blomberg, 2012), highlighting performance problems specifically
when sampling probabilities decrease through time (Rivandeneira
et al., 2009). Newly emerging Bayesian methods can, if used
appropriately, reduce such performance issues and improve species
classification (endangered or about to go extinct; Alroy, 2014), but
the effect of inherent dating error and their variation over time on
model performance have barely been assessed (Bradshaw et al.,
2012a). As dating errors typically increase as sampling reaches
deeper back in time (such as in palaeontological time series;
Walker, 2005), providing rigorous measures of the biases generated
by dating errors on bq is therefore essential.

Here we explore how the characteristics of time series of dated
records, such as the number of occurrences, time gaps between
records, and uncertainties in measured dates, act and interact to
constrain different frequentist models used commonly to infer q.
More specifically, we provide both quantitative and qualitative
criteria for: (i) maximizing the inferential capability of eight clas-
sical methods used to generate confidence intervals for q; and (ii)
provide a general guideline for selecting the most appropriate
method to infer q from a given time series of dated records. We first
describe these eight frequentist methods focussing on their con-
ceptual assumptions with respect to five summary variables char-
acterizing the types of time series usually available (henceforth,

Table 1
Description of the eight methods tested and categorized into five categories as a function of the kind of assumptions theymake about sampling intensity over time (p-sampling
assumption) and summary dataset characteristics (n, i, s2i, ε, s2ε; see Table 2 for complete description). For each method, we indicated model constraints (high performance
constraints) leading to its best performance from the sensitivity analysis (see Fig. 3 and Fig. A.6). For example, [x means that a high value of the ‘x’ parameter leads to high
model performance, considering that the number of arrows indicates the relative constraint intensity (i.e., [[ > [ and YY > Y).

Method p-Sampling assumption n i s2i ε s2ε High performance constraints

Strauss and Sadler (1989) [[n
McInerny et al. (2006) x x x e e [n, YYs2i
BRIWM Poisson stationary process [n, Yi
Solow et al. (2006) x x x x e YYε, Ys2i
McCarthy (1998) Marshall (1997) Recovery potential x x x e e [n, Ys2i
Roberts and Solow (2003) No assumptions x x x e e [[n, Yi
GRIWM (Bradshaw et al., 2012a) x x x x x [n, Yi, Yε
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