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Filtering of non-stationary noisy seismic signals using the fixed basis functions (sine and cosine) generates arti-
facts in the final output and thereby leads to wrong interpretation. In order to circumvent the problem, we pro-
pose here, a new Weighted Eigen Spectrogram (WES) based robust time domain Singular Spectrum Analysis
(SSA) frequency filtering algorithm. The new WES is used to simplify the Eigen triplet grouping procedure in
SSA. We tested the robustness of the algorithm on synthetic seismic data assorted with field-simulated noise.
Then we applied the method to filter the high-resolution seismic reflection field data. The band pass filtering
of noisy seismic records suggests that the underlying algorithm is efficient for improving the signal to noise
ratio (S/N) and also it is user-friendly.
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1. Introduction

Frequency domain filtering is a very useful tool for analyzing signal
and noise from of field seismic reflection data. Researchers have
employed several filtering techniques to filter the unwanted signal
from the band limited seismic reflection data (Yilmaz, 1987; Yilmaz,
2001) using fixed sine and cosine basis functions. These techniques
rely on the assumptions of stationary behavior of the data. However,
in practice most of seismic field data show spatio-temporal non-
stationary and non-linear behaviors. Consequently, application of the
above filtering techniques for non-stationary signal produces artifacts
in the final filtered output (Rajesh et al., 2014). Ghil and Taricco
(1997) have suggested Singular Spectrum Analysis (SSA) as a robust
method to decompose the non-stationary data with sudden changes,
jumps, and gaps using minimum number of Eigen modes (Rajesh
et al., 2014). Recently, Bozzo et al. (2010) have reported the analogy be-
tween Fourier spectral components and Eigenmodes of the SSA. Several
other researchers have independently given the spectral interpretation
of the independent Eigen/principalmodes of SSA (Harris and Yan, 2010;
Golyandina and Zhigljavsky, 2013). In a recent work, Rajesh et al.
(2014) have demonstrated the application of SSA based time domain
frequency filtering technique for seismic reflection data to overcome
the problem of artifacts. The comparative study with SSA based
frequency-filtering operation using the Fourier and f–x SSA methods

has shown that the artifacts arising due to domain conversion are not
present in the t–x SSA filtering scheme (Rajesh et al., 2014; Rajesh and
Tiwari, 2015). Hence, the SSA based filtering would be the appropriate
choice to analyze such data sets for better signal reconstruction (Yiou
et al., 2000; Rajesh et al., 2014).

However, the identification of periodicities from the Eigenvectors, as
proposed in our earlier work is not user friendly for its robust andwider
applicability. Hence, we develop here a user-friendly WES based algo-
rithm for wider adaptability of SSA frequency filtering (Rajesh et al.,
2014; Rajesh and Tiwari, 2015). Hence, the purpose of this paper is to
(i) demonstrate the new Weighted Eigen Spectrogram based robust
and user-friendly SSA frequency filtering algorithm (ii) test the pro-
posed algorithm on synthetic data and (iii) demonstrate its application
to high-resolution seismic reflection field data.

2. Methodology

The singular spectral analysis (SSA) is a robust tool to identify the
periodic components of a time series immersed in noise (Broomhead
and King, 1986a, 1986b; Fraedrich, 1986; Vautard and Ghil, 1989;
Vautard et al., 1992; Golyandina et al., 2001; Ghil et al., 2002; Oropeza
and Sacchi, 2011, Rajesh et al., 2014). Here we used the methodology
of SSA to filter the each trace of 2D seismic data given by D (t, x)

D t; xð Þ Nt�Nxð Þ ¼
s 1;1ð Þ s 1;2ð Þ ⋯ s 1;Nxð Þ
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The elements s (i, j) represents the reflection signal amplitudes cor-
responds to time i (0 b i ≤Nt) and of jth(0 b j ≤ Nx) trace. Here Nt and Nx

respectively represent the number of sampling times and number of re-
ceiver channels.

(i) Trajectory matrix formulation: To implement the SSA algorithm
on the ith trace represented by S(t, i)=
{s(1, i) s(2, i)…… . s( Nt, i)}, we formulate the trajectory/
Hankel matrix of the trace using an appropriate window length
(L) as shown below.

Ti L�Kð Þ ¼

s 1; ið Þ s 2; ið Þ
s 2; ið Þ s 3; ið Þ

⋮ ⋱

⋯ s K ; ið Þ
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Here K=N−L+1 and 0b i≤Nx. The selection of optimal window
(L) is crucial in SSA frequency filtering algorithm. In general, the win-
dow length should be at least equal to the highest period of the low fre-
quency component that is present in the data within the classical limit
2 b L ≤Nt / 2. In the present analysis,we have chosen thewindow length
as more than double the period corresponding to the lowest frequency
of our interest. Using the Hankel operator Oh, we canwrite the equation
2 as follows

Ti Lx�Kxð Þ ¼ Oh � S t; ið Þ ð3Þ

(ii) Singular Value Decomposition of Trajectory matrix: The next
stage of the algorithm is the Singular Value Decomposition
(SVD) of the trajectory matrix given by

Ti ¼ ∑
d

i¼1

ffiffiffiffiffiλi

p
Ui:V

T
i ð4Þ

Here Ui, Vi are the singular vectors corresponds to the ith non-zero
singular value √λi,Vi

T represents the transpose ofVi and d is the number

of Eigen components with non-zero Eigen value. The group (√λi, Ui, Vi)
is called the ith Eigen triplet and λ1 N λi N 0 for i = 1, 2… d.

In essence, through the decomposition operation denoted by Od we
will obtain Eigenvectors, Eigen values of the trajectorymatrix as follows

i:e:; Ti ¼ ∑d
i¼1

ffiffiffiffiffiλi

p
Ui:V

T
i ¼ Od:Ti ¼ Od:Oh:S t; ið Þ ð5Þ

(iii) Grouping from Weighted Eigen Spectrogram:

Nowwewill construct amatrixEw¼½ ffiffiffiffiffiffiλ1
p

U1:
ffiffiffiffiffiffiλ2

p
U2: ::::: :

ffiffiffiffiffiffiλk
p

Uk�of
KWeighted Eigenvectors.We apply the Fourier transform on Ew to con-
vert them into frequency domain. Even though we use the Fourier
transform to visualize the spectral content, the decomposition and the
reconstruction of the signal in the filtering operation is purely in the
time domain and uses the data adaptive Eigenvectors. Finally, we com-
pute the power spectral estimates of eachWeighted Eigenvector to gen-
erate the WES, a contour of power on the frequency - Eigen triplet
number 2D plot as shown in Fig. 2.

(iv) Reconstruction: In this stage, we reconstruct the trajectory ma-
trix (Tr ) from ‘k’ Eigen triplets selected from the WES.

Tr¼∑k
i¼1

ffiffiffiffiffiλi

p
Ui:V

T
i ð6Þ

We denote the above operation using reconstruction operator Or

and then using the Eqs. (5) and (6), Tr can be written as follows

i:e:; Tr ¼ Or :Td ¼ Or � Od � Oh � S i; xð Þ ð7Þ

In the final step, we average the anti-diagonal elements of
the reconstructed trajectory matrix Tr to obtain the filtered data
series Sr (t, i) where 1≤ i≤Nx . The computation of the elements of Sr is
as follows.

Sr k; ið Þ ¼ 1
k
∑k

m¼1xm; k−mþ1 for 0bkbL ð8aÞ

Sr k; ið Þ ¼ 1
L
∑L

m¼1xm; k−mþ1 for L−1bkbKþ 1 ð8bÞ

Fig. 2.Weighted Eigen Spectrogram of used for grouping the Eigen triplets corresponding
to frequency 30 to 100 Hz and enlarged image of WES showing (in red color rectangular
box) the spectral power at these frequencies. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 1. Synthetic data filtering (a) synthetic trace (b) noise (c) synthetic data added with
noise.
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